Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
332 result(s) for "Kasper, Lars"
Sort by:
Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning
Navigating the physical world requires learning probabilistic associations between sensory events and their change in time (volatility). Bayesian accounts of this learning process rest on hierarchical prediction errors (PEs) that are weighted by estimates of uncertainty (or its inverse, precision). In a previous fMRI study we found that low-level precision-weighted PEs about visual outcomes (that update beliefs about associations) activated the putative dopaminergic midbrain; by contrast, precision-weighted PEs about cue-outcome associations (that update beliefs about volatility) activated the cholinergic basal forebrain. These findings suggested selective dopaminergic and cholinergic influences on precision-weighted PEs at different hierarchical levels. Here, we tested this hypothesis, repeating our fMRI study under pharmacological manipulations in healthy participants. Specifically, we performed two pharmacological fMRI studies with a between-subject double-blind placebo-controlled design: study 1 used antagonists of dopaminergic (amisulpride) and muscarinic (biperiden) receptors, study 2 used enhancing drugs of dopaminergic (levodopa) and cholinergic (galantamine) modulation. Pooled across all pharmacological conditions of study 1 and study 2, respectively, we found that low-level precision-weighted PEs activated the midbrain and high-level precision-weighted PEs the basal forebrain as in our previous study. However, we found pharmacological effects on brain activity associated with these computational quantities only when splitting the precision-weighted PEs into their PE and precision components: in a brainstem region putatively containing cholinergic (pedunculopontine and laterodorsal tegmental) nuclei, biperiden (compared to placebo) enhanced low-level PE responses and attenuated high-level PE activity, while amisulpride reduced high-level PE responses. Additionally, in the putative dopaminergic midbrain, galantamine compared to placebo enhanced low-level PE responses (in a body-weight dependent manner) and amisulpride enhanced high-level precision activity. Task behaviour was not affected by any of the drugs. These results do not support our hypothesis of a clear-cut dichotomy between different hierarchical inference levels and neurotransmitter systems, but suggest a more complex interaction between these neuromodulatory systems and hierarchical Bayesian quantities. However, our present results may have been affected by confounds inherent to pharmacological fMRI. We discuss these confounds and outline improved experimental tests for the future.
Advances in spiral fMRI: A high-resolution study with single-shot acquisition
•This work reports the first fMRI study at 7T with high-resolution spiral readout gradient waveforms.•We achieve spiral fMRI with sub-millimeter resolution (0.8 mm, FOV 230 mm), acquired in a single shot (36 slices in 3.3 s).•Spiral images exhibit intrinsic geometric congruency to anatomical scans, and spatially specific activation patterns.•Image reconstruction rests on a signal model expanded by measured trajectories and static field maps, inverted by cg-SENSE.•We assess generalizability of the approach for spiral in/out readouts, providing two images per shot (1.5 mm resolution). Spiral fMRI has been put forward as a viable alternative to rectilinear echo-planar imaging, in particular due to its enhanced average k-space speed and thus high acquisition efficiency. This renders spirals attractive for contemporary fMRI applications that require high spatiotemporal resolution, such as laminar or columnar fMRI. However, in practice, spiral fMRI is typically hampered by its reduced robustness and ensuing blurring artifacts, which arise from imperfections in both static and dynamic magnetic fields. Recently, these limitations have been overcome by the concerted application of an expanded signal model that accounts for such field imperfections, and its inversion by iterative image reconstruction. In the challenging ultra-high field environment of 7 Tesla, where field inhomogeneity effects are aggravated, both multi-shot and single-shot 2D spiral imaging at sub-millimeter resolution was demonstrated with high depiction quality and anatomical congruency. In this work, we further these advances towards a time series application of spiral readouts, namely, single-shot spiral BOLD fMRI at 0.8 mm in-plane resolution. We demonstrate that high-resolution spiral fMRI at 7 T is not only feasible, but delivers both excellent image quality, BOLD sensitivity, and spatial specificity of the activation maps, with little artifactual blurring. Furthermore, we show the versatility of the approach with a combined in/out spiral readout at a more typical resolution (1.5 mm), where the high acquisition efficiency allows to acquire two images per shot for improved sensitivity by echo combination.
Whole-brain estimates of directed connectivity for human connectomics
Connectomics is essential for understanding large-scale brain networks but requires that individual connection estimates are neurobiologically interpretable. In particular, a principle of brain organization is that reciprocal connections between cortical areas are functionally asymmetric. This is a challenge for fMRI-based connectomics in humans where only undirected functional connectivity estimates are routinely available. By contrast, whole-brain estimates of effective (directed) connectivity are computationally challenging, and emerging methods require empirical validation. Here, using a motor task at 7T, we demonstrate that a novel generative model can infer known connectivity features in a whole-brain network (>200 regions, >40,000 connections) highly efficiently. Furthermore, graph-theoretical analyses of directed connectivity estimates identify functional roles of motor areas more accurately than undirected functional connectivity estimates. These results, which can be achieved in an entirely unsupervised manner, demonstrate the feasibility of inferring directed connections in whole-brain networks and open new avenues for human connectomics.
A Hilbert-based method for processing respiratory timeseries
•We introduce a new estimator for respiratory volume per unit time from respiratory recordings.•We demonstrate how this is able to accurately characterise atypical breathing events.•This removes significantly more variance when used as a confound regressor for fMRI data.•Our implementation is included in PhysIO, released as part of TAPAS: https://translationalneuromodeling.org/tapas. In this technical note, we introduce a new method for estimating changes in respiratory volume per unit time (RVT) from respiratory bellows recordings. By using techniques from the electrophysiological literature, in particular the Hilbert transform, we show how we can better characterise breathing rhythms, with the goal of improving physiological noise correction in functional magnetic resonance imaging (fMRI). Specifically, our approach leads to a representation with higher time resolution and better captures atypical breathing events than current peak-based RVT estimators. Finally, we demonstrate that this leads to an increase in the amount of respiration-related variance removed from fMRI data when used as part of a typical preprocessing pipeline. Our implementation is publicly available as part of the PhysIO package, which is distributed as part of the open-source TAPAS toolbox (https://translationalneuromodeling.org/tapas).
Inferring on the Intentions of Others by Hierarchical Bayesian Learning
Inferring on others' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to \"player\" or \"adviser\" roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition.
Feasibility of spiral fMRI based on an LTI gradient model
•This work investigates the feasibility of using a one-time system calibration to account for k-space trajectory deviations in spiral fMRI.•This versatile calibration is based on a linear time-invariant gradient model, the gradient impulse response function (GIRF).•We show that the image quality and the spatial specificity of the fMRI activation are substantially improved when using the GIRF-predicted trajectories.•Basing reconstructions on nominal gradient inputs, on the other hand, induces image artifacts and misplaced fMRI activation.•We demonstrate that system characterization via the GIRF can enable spiral fMRI in situations where concurrent trajectory monitoring is unavailable. Spiral imaging is very well suited for functional MRI, however its use has been limited by the fact that artifacts caused by gradient imperfections and B0 inhomogeneity are more difficult to correct compared to EPI. Effective correction requires accurate knowledge of the traversed k-space trajectory. With the goal of making spiral fMRI more accessible, we have evaluated image reconstruction using trajectories predicted by the gradient impulse response function (GIRF), which can be determined in a one-time calibration step. GIRF-predicted reconstruction was tested for high-resolution (0.8 mm) fMRI at 7T. Image quality and functional results of the reconstructions using GIRF-prediction were compared to reconstructions using the nominal trajectory and concurrent field monitoring. The reconstructions using nominal spiral trajectories contain substantial artifacts and the activation maps contain misplaced activation. Image artifacts are substantially reduced when using the GIRF-predicted reconstruction, and the activation maps for the GIRF-predicted and monitored reconstructions largely overlap. The GIRF reconstruction provides a large increase in the spatial specificity of the activation compared to the nominal reconstruction. The GIRF-reconstruction generates image quality and fMRI results similar to using a concurrently monitored trajectory. The presented approach does not prolong or complicate the fMRI acquisition. Using GIRF-predicted trajectories has the potential to enable high-quality spiral fMRI in situations where concurrent trajectory monitoring is not available. [Display omitted]
The relationship between resting-state functional connectivity, antidepressant discontinuation and depression relapse
The risk of relapsing into depression after stopping antidepressants is high, but no established predictors exist. Resting-state functional magnetic resonance imaging (rsfMRI) measures may help predict relapse and identify the mechanisms by which relapses occur. rsfMRI data were acquired from healthy controls and from patients with remitted major depressive disorder on antidepressants. Patients were assessed a second time either before or after discontinuation of the antidepressant, and followed up for six months to assess relapse. A seed-based functional connectivity analysis was conducted focusing on the left subgenual anterior cingulate cortex and left posterior cingulate cortex. Seeds in the amygdala and dorsolateral prefrontal cortex were explored. 44 healthy controls (age: 33.8 (10.5), 73% female) and 84 patients (age: 34.23 (10.8), 80% female) were included in the analysis. 29 patients went on to relapse and 38 remained well. The seed-based analysis showed that discontinuation resulted in an increased functional connectivity between the right dorsolateral prefrontal cortex and the parietal cortex in non-relapsers. In an exploratory analysis, this functional connectivity predicted relapse risk with a balanced accuracy of 0.86. Further seed-based analyses, however, failed to reveal differences in functional connectivity between patients and controls, between relapsers and non-relapsers before discontinuation and changes due to discontinuation independent of relapse. In conclusion, changes in the connectivity between the dorsolateral prefrontal cortex and the posterior default mode network were associated with and predictive of relapse after open-label antidepressant discontinuation. This finding requires replication in a larger dataset.
Neural arbitration between social and individual learning systems
Decision making requires integrating knowledge gathered from personal experiences with advice from others. The neural underpinnings of the process of arbitrating between information sources has not been fully elucidated. In this study, we formalized arbitration as the relative precision of predictions, afforded by each learning system, using hierarchical Bayesian modeling. In a probabilistic learning task, participants predicted the outcome of a lottery using recommendations from a more informed advisor and/or self-sampled outcomes. Decision confidence, as measured by the number of points participants wagered on their predictions, varied with our definition of arbitration as a ratio of precisions. Functional neuroimaging demonstrated that arbitration signals were independent of decision confidence and involved modality-specific brain regions. Arbitrating in favor of self-gathered information activated the dorsolateral prefrontal cortex and the midbrain, whereas arbitrating in favor of social information engaged the ventromedial prefrontal cortex and the amygdala. These findings indicate that relative precision captures arbitration between social and individual learning systems at both behavioral and neural levels.
Web-based processing of physiological noise in fMRI: addition of the PhysIO toolbox to CBRAIN
Neuroimaging research requires sophisticated tools for analyzing complex data, but efficiently leveraging these tools can be a major challenge, especially on large datasets. CBRAIN is a web-based platform designed to simplify the use and accessibility of neuroimaging research tools for large-scale, collaborative studies. In this paper, we describe how CBRAIN’s unique features and infrastructure were leveraged to integrate TAPAS PhysIO, an open-source MATLAB toolbox for physiological noise modeling in fMRI data. This case study highlights three key elements of CBRAIN’s infrastructure that enable streamlined, multimodal tool integration: a user-friendly GUI, a Brain Imaging Data Structure (BIDS) data-entry schema, and convenient in-browser visualization of results. By incorporating PhysIO into CBRAIN, we achieved significant improvements in the speed, ease of use, and scalability of physiological preprocessing. Researchers now have access to a uniform and intuitive interface for analyzing data, which facilitates remote and collaborative evaluation of results. With these improvements, CBRAIN aims to become an essential open-science tool for integrative neuroimaging research, supporting FAIR principles and enabling efficient workflows for complex analysis pipelines.
A generative model of whole-brain effective connectivity
The development of whole-brain models that can infer effective (directed) connection strengths from fMRI data represents a central challenge for computational neuroimaging. A recently introduced generative model of fMRI data, regression dynamic causal modeling (rDCM), moves towards this goal as it scales gracefully to very large networks. However, large-scale networks with thousands of connections are difficult to interpret; additionally, one typically lacks information (data points per free parameter) for precise estimation of all model parameters. This paper introduces sparsity constraints to the variational Bayesian framework of rDCM as a solution to these problems in the domain of task-based fMRI. This sparse rDCM approach enables highly efficient effective connectivity analyses in whole-brain networks and does not require a priori assumptions about the network's connectivity structure but prunes fully (all-to-all) connected networks as part of model inversion. Following the derivation of the variational Bayesian update equations for sparse rDCM, we use both simulated and empirical data to assess the face validity of the model. In particular, we show that it is feasible to infer effective connection strengths from fMRI data using a network with more than 100 regions and 10,000 connections. This demonstrates the feasibility of whole-brain inference on effective connectivity from fMRI data – in single subjects and with a run-time below 1 min when using parallelized code. We anticipate that sparse rDCM may find useful application in connectomics and clinical neuromodeling – for example, for phenotyping individual patients in terms of whole-brain network structure.