Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
95 result(s) for "Kaspi, Shai"
Sort by:
Direct evidence of non-disk optical continuum emission around an active black hole
Accretion onto black holes is key to their growth over cosmic time1, especially during the active galactic nuclei phase when the inflowing material forms a radiatively efficient accretion disk2. To probe the disk, indirect imaging methods such as reverberation mapping3–6 and microlensing7,8 are required. Recent findings suggest that the disk may be larger than theoretical predictions by a factor of a few4,6,9, thus casting doubt on our understanding of accretion in the general astrophysical context. Whether new physics is implied10–12 or poorly understood biases are in effect5,6,13,14 is a longstanding question. Here, we report new reverberation data based on a unique narrowband-imaging design15, and argue that time delays between adjacent optical bands are primarily associated with the reprocessing of light by a farther away under-appreciated non-disk component. This component is associated with high-density photoionized material that is uplifted from the outer accretion disk, probably by radiation-pressure force on dust, and thus may represent the long-sought origin of the broad-line region16. Our findings suggest that the optical phenomenology of some active galactic nuclei may be substantially affected by non-disk continuum emission with implications for measuring the fundamental properties of black holes and their active environs over cosmic time.New variability data of the accretion disk in active galactic nuclei argue for the existence of a farther away under-appreciated non-disk component associated with high-density photoionized material that is uplifted from the outer accretion disk.
Measuring supermassive black holes via reverberation mapping in the UV
Over the past three decades the reverberation mapping technique was used to measure the central regions of Active Galactic Nuclei (AGN), their size, velocity field, and the mass of the black hole in the center. This technique was used mainly in the optical with several studies in the UV. Reverberation mapping in the UV adds essential information to the AGN studies. This paper reviews these recent studies done in the UV, presents results from the recent HST campaign toward NGC 5548, and discuss two projects of reverberation mapping of UV emission lines in high-luminosity quasars. The advantages of reverberation mapping in the UV will be discussed as well as the needs from new UV missions in order to be able to advance UV reverberation mapping campaigns.
On Uncertainties in Cross‐Correlation Lags and the Reality of Wavelength‐dependent Continuum Lags in Active Galactic Nuclei
We describe a model‐independent method of assessing the uncertainties in cross‐correlation lags determined from the light curves of active galactic nuclei (AGNs) and use this method to investigate the reality of lags between UV and optical continuum variations in well‐studied AGNs. Our results confirm the existence of such lags in NGC 7469. We find that the continuum variations at 1825, 4845, and 6962 Å follow those at 1315 Å by \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $0.22^{+0.12}_{-0.13}$ \\end{document} , \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $1.25^{+0.48}_{-0.35}$ \\end{document} , and \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $1.84^{+0.93}_{-0.94}$ \\end{document} days, respectively, based on the centroids of the cross‐correlation functions; the error intervals quoted correspond to 68% confidence levels, and each of these lags is greater than zero at no less than 97% confidence. We do not find statistically significant interband continuum lags in NGC 5548, NGC 3783, or Fairall 9. Wavelength‐dependent continuum lags may be marginally detected in the case of NGC 4151. However, on the basis of theoretical considerations, wavelength‐dependent continuum lags in sources other than NGC 7469 are not expected to have been detectable in previous experiments. We also confirm the existence of a statistically significant lag between X‐ray and UV continuum variations in the blazar PKS 2155−304.
Recent results of measuring black hole masses via reverberation mapping
Over the past three decades more than 100 Active Galactic Nuclei (AGNs) were measured using the reverberation mapping technique. This technique uses the response of the line emission in the Broad Line Region (BLR) to continuum emission variation and yields a measure for the distance of the BLR from the central Black Hole (BH). This in turn is used to measure the BH’s mass. Almost all of these measurements are of low-luminosity AGNs while for quasars with luminosities higher than 1046 rg s−1 there are hardly any attempts of reverberation mapping. This contribution reports on recent results from a two-decades campaigns to measure the BH mass in high-luminosity quasars using the reverberation mapping technique. BLR distance from the BH, BH mass, and AGN UV luminosity relations over eight orders of magnitude in luminosity are presented, pushing the luminosity limit to the highest point so far.
The Centurion 18 telescope of the Wise Observatory
We describe the second telescope of the Wise Observatory, a 0.46-m Centurion 18 (C18) installed in 2005, which enhances significantly the observing possibilities. The telescope operates from a small dome and is equipped with a large-format CCD camera. In the last two years this telescope was intensively used in a variety of monitoring projects. The operation of the C18 is now automatic, requiring only start-up at the beginning of a night and close-down at dawn. The observations are mostly performed remotely from the Tel Aviv campus or even from the observer’s home. The entire facility was erected for a component cost of about 70k$ and a labor investment of a total of one man-year. We describe three types of projects undertaken with this new facility: the measurement of asteroid light variability with the purpose of determining physical parameters and binarity, the following-up of transiting extrasolar planets, and the study of AGN variability. The successful implementation of the C18 demonstrates the viability of small telescopes in an age of huge light-collectors, provided the operation of such facilities is very efficient.
Studying the outskirts of reverberation mapped AGNs
About 100 AGNs have their black hole mass measured directly using the reverberation mapping technique over the past few decades. By now we have high enough numbers to explore unique subsamples within these objects and to study phenomena across variety of AGNs. I will review recent reverberation mapping studies which focus on high-redshift high-luminosity AGNs and on AGNs with super-Eddington accreting massive black holes. These studies enable to investigate the BLR size, mass, and luminosity relations in different subsamples of AGNs and to check whether there are differences in these relations in different types of AGNs. In particular I will discuss the following questions: Is the BLR size - luminosity relation the same over the whole AGNs luminosity range? Are there different relations for different types of AGNs? What are these studies teaching us about theory of accretion into black holes in AGNs?
Automatized Photometric Monitoring of Active Galactic Nuclei with the 46 cm Telescope of the Wise Observatory
We present the first results of an ongoing variability monitoring program of active galactic nuclei (AGNs) using the 46 cm telescope of the Wise Observatory in Israel. The telescope has a field of view of 1.25 ° × 0.84 ° and is specially equipped with five narrowband filters at 4300, 5200, 5700, 6200, and 7000 to perform photometric reverberation mapping studies of the central engine of AGNs. The program aims to observe a sample of 27 AGNs (V < 17 mag) selected according to tentative continuum and line time delay measurements obtained in previous works. We describe the autonomous operation of the telescope together with the fully automatic pipeline used to achieve high-performance unassisted observations, data reduction, and light curves extraction using different photometric methods. The science verification data presented here demonstrates the performance of the monitoring program in particular for efficiently photometric reverberation mapping of AGNs with additional capabilities to carry out complementary studies of other transient and variable phenomena such as variable stars studies.
Automatized Photometric Monitoring of Active Galactic Nuclei with the 46cm Telescope of the Wise Observator
We present the first results of an ongoing variability monitoring program of active galactic nuclei (AGNs) using the 46 cm telescope of the Wise Observatory in Israel. The telescope has a field of view of 1.25° × 0.84° and is specially equipped with five narrowband filters at 4300, 5200, 5700, 6200, and 7000 Å to perform photometric reverberation mapping studies of the central engine of AGNs. The program aims to observe a sample of 27 AGNs (V < 17 mag) selected according to tentative continuum and line time delay measurements obtained in previous works. We describe the autonomous operation of the telescope together with the fully automatic pipeline used to achieve high-performance unassisted observations, data reduction, and light curves extraction using different photometric methods. The science verification data presented here demonstrates the performance of the monitoring program in particular for efficiently photometric reverberation mapping of AGNs with additional capabilities to carry out complementary studies of other transient and variable phenomena such as variable stars studies.
The Jay Baum Rich telescope: a Centurion 28 at the Wise Observatory
We describe the third telescope of the Wise Observatory, a 0.70-m Centurion 28 (C28IL) installed in 2013 and named the Jay Baum Rich telescope to enhance significantly the wide-field imaging possibilities of the observatory. The telescope operates from a 5.5-m diameter dome and is equipped with a large-format red-sensitive CCD camera, offering a ∼one square degree imaged field sampled at 0 ″ . 83 pixel − 1 . The telescope was acquired to provide an alternative to the existing 1-m telescope for studies such as microlensing, photometry of transiting exo-planets, the follow-up of supernovae and other optical transients, and the detection of very low surface brightness extended features around galaxies. The operation of the C28IL is robotic, requiring only the creation of a night observing plan that is loaded in the afternoon prior to the observations. The entire facility was erected for a component and infrastructure cost of well under 300 k$ and a labor investment of about two person-year. The successful implementation of the C28IL, at a reasonable cost, demonstrates the viability of small telescopes in an age of huge light-collectors.
High Velocity Outflows in AGNs Observed with Gratings
Several Active Galactic Nuclei (AGNs) have been reported to harbor fast outflows exceeding 10,000 km s −1 , which are detected mostly in their low-resolution CCD X-ray spectra. Only few, however, were detected with high-resolution grating spectrometers. Most of the grating detected outflows have been observed multiple times. In these cases, the absorption spectrum changes are indicating that variability is common among these high-velocity winds. In this paper we revisit the grating observations of PG 1211+143, and PDS 456, and report preliminary results on 4C 74.26. We discuss the spectral variability of the first two sources and its implications to the outflows.