Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
944 result(s) for "Katherine Howard"
Sort by:
Covered in time and history : the films of Ana Mendieta
\"Born to a prominent family in Havana but exiled to the US as a girl, Ana Mendieta (1948-1985) is regarded as one of the most significant artists of the postwar era. During her too-brief career, she produced a distinctive body of work that includes drawings, installations, performances, photographs, and sculpture. Less well known is her remarkable and prolific production of experimental films. This richly illustrated catalogue presents a series of sequential color stills from each of twenty-one original Super 8 films that have been newly preserved and digitized in high definition, combined with related photographs, and reference still images from all of the artist's 100 films; together these illustrations sample the full range of the artist's film practice from 1973 to 1981. The book includes Mendieta's first published comprehensive filmography resulting from three years of collaborative research conducted by the Estate of Ana Mendieta and the University of Minnesota as well as original essays by John Perreault, Michael Rush, Rachel Weiss, Lynn Lukkas, Raquel Cecilia Mendieta, and Laura Wertheim Joseph. The first book-length treatment of Mendieta's moving-image practice, Covered in Time and History aims to locate her films centrally within her larger oeuvre and at the forefront of the multidisciplinary shifts that characterized visual arts practice during the 1970s.\"--Provided by publisher.
miR-365 (microRNA): Potential Biomarker in Oral Squamous Cell Carcinoma Exosomes and Extracellular Vesicles
Introduction: miR-365 is a non-coding microRNA that regulates transcription and has been demonstrated to promote oncogenesis and metastasis in some cancers, while suppressing these effects in others. Many microRNAs are produced and then exported extracellularly in exosomes, which are small extracellular vesicles ranging from 30 to 100 nm that are found in eukaryotic fluids and facilitate many cellular functions. Exosomes and extracellular vesicles are produced by many cell types, including oral cancer cells—although no study to date has evaluated miR-365 and oral cancer exosomes or extracellular vesicles. Based on this information, our research question was to evaluate whether oral cancers produce exosomes or extracellular vesicles containing miR-365. Materials and Methods: Two commercially available oral cancer cell lines (SCC25 and CAL27) and a normal oral keratinocyte (OKF4) were grown in serum-free media, supplemented with exosome-depleted fetal bovine serum. Extracellular vesicles and exosomes were then isolated using the Invitrogen total exosome RNA and protein isolation kit for processing using the hsa-miR-365a-5p microRNA qPCR assay kit. Results: RNA was successfully isolated from the exosome-depleted supernatant from each cell line—SCC9, SCC15, SCC25, and CAL27 (oral squamous cell carcinomas) and OKF4 (oral epithelial cell line). Relative concentrations of RNA were similar among each cell line, which were not significantly different, p = 0.233. RNA quality was established by A260:A280 absorbance using a NanoDrop, revealing purity ranging 1.73–1.86. Expression of miR-16 was used to confirm the presence of microRNA from the extracted exosomes and extracellular vesicles. The presence of miR-365 was then confirmed and normalized to miR-16 expression, which demonstrated an increased level of miR-365 in both CAL27 and SCC25. In addition, the normalized relative quantity (RQ) for miR-365 exhibited greater variation among SCC25 (1.382–4.363) than CAL27 cells (1.248–1.536). Conclusions: These results confirm that miR-365 is not only expressed in oral cancer cell lines, but also is subsequently exported into exosomes and extracellular vesicles derived from these cultures. These data may help to contextualize the potential for this microRNA to contribute to the phenotypes and behaviors of oral cancers that express this microRNA. Future research will begin to investigate these potential mechanisms and pathways and to determine if miR-365 may be useful as an oral cancer biomarker for salivary or liquid biopsies.
Differential Expression of MicroRNA MiR-145 and MiR-155 Downstream Targets in Oral Cancers Exhibiting Limited Chemotherapy Resistance
New evidence has suggested that non-coding microRNAs play a significant role in mediating and modulating chemotherapy resistance, particularly among oral cancers. One recent study found that the upregulation of miR-145 and the downregulation of miR-155 strongly correlated with a limited chemotherapy resistance to Cisplatin, 5-Fluorouracil, and Paclitaxel, although the mechanism(s) responsible for these observations remain unidentified. Using commercially available cell lines of oral squamous cell carcinoma, RNA was isolated, converted into cDNA, and subsequently screened for the expression of downstream targets of miR-145 and miR-155 using qPCR. These results demonstrated the upregulation of miR-21, miR-125, miR-133, miR-365, miR-720, and miR-1246, as well as the downregulation of miR-140, miR-152, miR-218, miR-221, and miR-224. This screening also confirmed the differential expression and regulation of mir-145 and miR-155 among the cell lines with limited chemotherapy resistance (SCC15). In addition, several downstream targets of these specific microRNAs were upregulated by all oral cancer cell lines, such as MBTD1 and FSCN1, or downregulated in all cell lines, such as CLCN3, FLI-1, MRTFB, DAB, SRGAP1, and ABHD17C. However, three miR-145 downstream targets were identified in the least chemotherapy-resistant cells, exhibiting the differential upregulation of KCNA4 and SRGAP2, as well as the downregulation of FAM135A, with this expression pattern not detected in any of the other oral cancer cell lines. These data strongly support that the differential regulation of these three downstream targets may be related to the chemosensitivity of this oral cancer cell line. The potential involvement of these targets must be further investigated to determine how and whether mechanisms of these cellular pathways may be involved in the observed lack of chemotherapy resistance. These data may be important to design targets or treatments to reduce chemotherapy resistance and improve patient treatment outcomes.
Screening for Selenomonas noxia in a Pediatric and Adolescent Patient Population Reveals Differential Oral Prevalence across Age Groups
Selenomonas noxia, a gram-negative anaerobe usually present in periodontitis, may be linked to overweight and obese adults. Recent advancements include a valid qPCR screening, enabling an effective prevalence study among pediatric patients aged 7 to 17 years. The aim of this study was to complete a retrospective screening of saliva samples from an existing biorepository using a validated qPCR screening protocol. The pediatric study sample (n = 87) comprised nearly equal numbers of males and females, mostly minority patients (67%), with an average age of 13.2 years. Screening for Selenomonas noxia revealed 34.4% (n = 30/87) positive samples, evenly distributed between males and females (p = 0.5478). However, an age-dependent association was observed with higher percentages of positive samples observed with higher ages (13.3% among 7 to 10 years; 34.6% among 11 to 13 years; 54.8% among 14–17 years), which was statistically significant (p = 0.0001). Although these findings revealed no noteworthy distinctions between males or females and minorities and non-minorities, the notable contrast between younger (7 to 10 years) and older (11 to 17 years) participants, possibly influenced by factors such as hormones and behavioral traits, will require further investigation of this patient population.
Chemotherapeutic Drug Resistance Associated with Differential miRNA Expression of miR-375 and miR-27 among Oral Cancer Cell Lines
Recent advances have suggested that non-coding miRNAs (such as miR-21, miR-27, miR-145, miR-155, miR-365, miR-375 and miR-494) may be involved in multiple aspects of oral cancer chemotherapeutic responsiveness. This study evaluated whether these specific miRNAs are correlated with oral cancer responsiveness to chemotherapies, including Paclitaxel, Cisplatin and Fluorouracil (5FU). Commercially available and well-characterized oral squamous cell carcinoma cell lines (SCC4, SCC9, SCC15, SCC25 and CAL27) revealed differing resistance and chemosensitivity to these agents—with SCC9 and SCC25 demonstrating the most resistance to all chemotherapeutic agents. SCC9 and SCC25 were also the only cell lines that expressed miR-375, and were the only cell lines that did not express miR-27. In addition, the expression of miR-375 was associated with the upregulation of Rearranged L-myc fusion (RLF) and the downregulation of Centriolar protein B (POC1), whereas lack of miR-27 expression was associated with Nucleophosmin 1 (NPM1) expression. These data have revealed important regulatory pathways and mechanisms associated with oral cancer proliferation and resistance that must be explored in future studies of potential therapeutic interventions.
Downstream Target Analysis for miR-365 among Oral Squamous Cell Carcinomas Reveals Differential Associations with Chemoresistance
Expression of microRNAs, such as miR-365, is known to be dysregulated in many tumors, including oral cancers, although little is known about their role or functions. The objective of this project is to evaluate the downstream targets of miR-365 to determine any potential pathways or effects. Downstream targets for miR-365 (miRdatabase target scores > 90) were used for qPCR screening of oral cancer cell lines (SCC4, SCC9, SCC15, SCC25, CAL27). Each oral cancer cell line expressed miR-365 downstream targets molybdenum cofactor synthesis-2 (MOCS2), erythropoietin receptor (EPOR), IQ motif containing-K (IQCK), carboxypeptidase A3 (CPA3), solute carrier family 24 member-3 (SLC24A3), and coiled-coil domain containing 47 (CCDC47)—although the expression levels varied somewhat. However, differential results were observed with ubiquitin protein ligase E3 component n-recognin-3 (UBR3), nudix hydrolase-12 (NUDT12), zinc finger CCHC-type containing-14 (ZCCHC14), and homeobox and leucine zipper encoding (HOMEZ). These data suggest that many of the miR-365 targets are expressed in the oral cancers screened, with the differential expression of UBR3, ZCCHC14, HOMEZ, and NUDT12, which may be correlated with chemoresistance among two specific oral cancer cell lines (SCC25, SCC9). These results suggest this differential expression may signal potential targets for patient treatment with tumors exhibiting miR-365 and chemotherapeutic resistance.
Hereditary cancer testing in a diverse sample across three breast imaging centers
Purpose Up to 10% of all breast cancers (BC) are attributed to inherited pathogenic variants (PV) in BC susceptibility genes; however, most carriers of PVs remain unidentified. Here, we sought to determine the yield of hereditary cancer gene PVs among diverse women attending breast imaging centers, who could benefit from enhanced surveillance and/or risk reduction interventions. Methods This cross-sectional retrospective cohort study included consecutive women, unselected for personal or family cancer history, who were offered genetic testing for hereditary cancer genes at the time of breast imaging at three centers (November 2020–March 2022). Results Among 1943 patients (median age: 66 years), self-reported race/ethnicity was White (34.5%), Hispanic (27.7%), African American (17.9%), Asian (4.5%), Ashkenazi Jewish (0.6%), Other (3.5%), and missing (13.0%). Thirty-nine patients (2%) were identified as carriers of a PV in an autosomal dominant clinically actionable hereditary breast and ovarian cancer (HBOC)-related or Lynch syndrome gene, most frequently, BRCA2 (6/39; 15.4%), PALB2 (8/39; 20.5%), CHEK2 (10/39; 25.6%), and PMS2 (5/39; 12.8%). Of the 34 PVs with known race/ethnicity, 47% were detected among non-White patients. Overall, 354/1,943 (18.2%) of patients met NCCN guidelines for HBOC gene testing and only 15/39 (38.5%) patients with an autosomal dominant clinically actionable PV met guidelines. Conclusion This population health approach extended the reach of genetic cancer risk assessment in a diverse population and highlighted the limits of a guideline-based approach. This may help address inequity in access to risk-appropriate screening and cancer prevention.
Differential MicroRNA Expression of miR-21 and miR-155 within Oral Cancer Extracellular Vesicles in Response to Melatonin
Objective: Extracellular vesicles derived from oral cancer cells, which include Exosomes and Oncosomes, are membranous vesicles secreted into the surrounding extracellular environment. These extracellular vesicles can regulate and modulate oral squamous cell carcinoma (OSCC) progression through the horizontal transfer of bioactive molecules including proteins, lipids and microRNA (miRNA). The primary objective of this study was to examine the potential to isolate and evaluate extracellular vesicles (including exosomes) from various oral cancer cell lines and to explore potential differences in miRNA content. Methods: The OSCC cell lines SCC9, SCC25 and CAL27 were cultured in DMEM containing 10% exosome-free fetal bovine serum. Cell-culture conditioned media was collected for exosome and extracellular vesicle isolation after 72 h. Isolation was completed using the Total Exosome Isolation reagent (Invitrogen) and extracellular vesicle RNA was purified using the Total Exosome RNA isolation kit (Invitrogen). Extracellular vesicle miRNA content was evaluated using primers specific for miR-16, -21, -133a and -155. Results: Extracellular vesicles were successfully isolated from all three OSCC cell lines and total extracellular vesicle RNA was isolated. Molecular screening using primers specific for several miRNA revealed differential baseline expression among the different cell lines. The addition of melatonin significantly reduced the expression of miR-155 in all of the OSCC extracellular vesicles. However, miR-21 was significantly increased in each of the three OSCC isolates. No significant changes in miR-133a expression were observed under melatonin administration. Conclusions: Although many studies have documented changes in gene expression among various cancers under melatonin administration, few studies have evaluated these effects on microRNAs. These results may be among the first to evaluate the effects of melatonin on microRNA expression in oral cancers, which suggests the differential modulation of specific microRNAs, such as miR-21, miR-133a and miR-155, may be of significant importance when evaluating the mechanisms and pathways involved in melatonin-associated anti-tumor effects.
Administration of Epidermal Growth Factor (EGF) and Basic Fibroblast Growth Factor (bFGF) to Induce Neural Differentiation of Dental Pulp Stem Cells (DPSC) Isolates
The aging populations in many countries have developed many chronic illnesses and diseases, including chronic neurologic conditions such as Parkinson’s and Azheimer’s diseases. Many new lines of research and treatment are focusing on the potential for neurologic regeneration using mesenchymal stem cells (MSCs) in the rapidly growing field of regenerative medicine. This may include dental pulp stem cells (DPSCs), which have recently been demonstrated to produce neuronal precursors. Based upon this evidence, the primary aim of this study was to determine if the growth factors used in MSC-based studies are sufficient to induce neuronal differentiation among DPSCs. Using an existing biorepository, n = 16 DPSC isolates were thawed and cultured for this study, which revealed several subpopulations of rapid-, intermediate-, and slowly dividing DPSCs. Administration of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were sufficient to induce differential changes in growth and viability mainly among some of the rapidly growing DPSCs (n = 4). These phenotypic changes included expression of neural differentiation markers including Sox1, Pax6 and NF-M, which were observed only among those DPSC isolates not expressing early odontoblast-specific biomarkers such as ALP and DSPP. Future studies will be needed to confirm if these methods are sufficient to induce consistent and reliable induction of DPSCs towards neuronal specific differentiation.
Higher Prevalence of the Periodontal Pathogen Selenomonas noxia among Pediatric and Adult Patients May Be Associated with Overweight and Obesity
New evidence has suggested that oral and gut microflora may have significant impacts on the predisposition, development, and stability of obesity in adults over time—although less is known about this phenomenon in children. Compared with healthy-weight controls, overweight and obese adult patients are now known to harbor specific pathogens, such as Selenomonas noxia (S. noxia), that are capable of digesting normally non-digestible cellulose and fibers that significantly increase caloric extraction from normal dietary intake. To evaluate this phenomenon, clinical saliva samples (N = 122) from subjects with a normal BMI (18–25) and a BMI over 25 (overweight, obese) from an existing biorepository were screened using qPCR. The prevalence of S. noxia in samples from normal-BMI participants were lower (21.4%) than in overweight-BMI (25–29; 46.1%) and obese-BMI (30 and above; 36.8%) samples—a strong, positive correlation that was not significantly affected by age or race and ethnicity. These data strongly suggest that S. noxia may be intricately associated with overweight and obesity among patients, and more research will be needed to determine the positive and negative feedback mechanisms that may be responsible for these observations as well as the interventions needed to remove or reduce the potential effects of this oral pathogen.