Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
100
result(s) for
"Kato, Gregory"
Sort by:
Intravascular hemolysis and the pathophysiology of sickle cell disease
by
Kato, Gregory J.
,
Gladwin, Mark T.
,
Steinberg, Martin H.
in
Anemia
,
Anemia, Sickle Cell - blood
,
Anemia, Sickle Cell - physiopathology
2017
Hemolysis is a fundamental feature of sickle cell anemia that contributes to its pathophysiology and phenotypic variability. Decompartmentalized hemoglobin, arginase 1, asymmetric dimethylarginine, and adenine nucleotides are all products of hemolysis that promote vasomotor dysfunction, proliferative vasculopathy, and a multitude of clinical complications of pulmonary and systemic vasculopathy, including pulmonary hypertension, leg ulcers, priapism, chronic kidney disease, and large-artery ischemic stroke. Nitric oxide (NO) is inactivated by cell-free hemoglobin in a dioxygenation reaction that also oxidizes hemoglobin to methemoglobin, a non-oxygen-binding form of hemoglobin that readily loses heme. Circulating hemoglobin and heme represent erythrocytic danger-associated molecular pattern (eDAMP) molecules, which activate the innate immune system and endothelium to an inflammatory, proadhesive state that promotes sickle vaso-occlusion and acute lung injury in murine models of sickle cell disease. Intravascular hemolysis can impair NO bioavailability and cause oxidative stress, altering redox balance and amplifying physiological processes that govern blood flow, hemostasis, inflammation, and angiogenesis. These pathological responses promote regional vasoconstriction and subsequent blood vessel remodeling. Thus, intravascular hemolysis represents an intrinsic mechanism for human vascular disease that manifests clinical complications in sickle cell disease and other chronic hereditary or acquired hemolytic anemias.
Journal Article
The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease
by
Kato, Gregory J.
,
Kapetanaki, Maria G.
,
Gbotosho, Oluwabukola T.
in
Anemia
,
Anemia, Sickle Cell - complications
,
Anemia, Sickle Cell - metabolism
2021
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Journal Article
Simultaneous polymerization and adhesion under hypoxia in sickle cell disease
by
Dao, Ming
,
Kato, Gregory J.
,
Karniadakis, George E.
in
Adhesion
,
Anemia
,
Anemia, Sickle Cell - blood
2018
Polymerization and adhesion, dynamic processes that are hallmarks of sickle cell disease (SCD), have thus far been studied in vitro only separately. Here, we present quantitative results of the simultaneous and synergistic effects of adhesion and polymerization of deoxygenated sickle hemoglobin (HbS) in the human red blood cell (RBC) on the mechanisms underlying vasoocclusive pain crisis. For this purpose, we employ a specially developed hypoxic microfluidic platform, which is capable of inducing sickling and unsickling of RBCs in vitro, to test blood samples from eight patients with SCD. We supplemented these experimental results with detailed molecular-level computational simulations of cytoadherence and biorheology using dissipative particle dynamics. By recourse to image analysis techniques, we characterize sickle RBC maturation stages in the following order of the degree of adhesion susceptibility under hypoxia: sickle reticulocytes in circulation (SRs) → sickle mature erythrocytes (SMEs) → irreversibly sickled cells (ISCs). We show that (i) hypoxia significantly enhances sickle RBC adherence; (ii) HbS polymerization enhances sickle cell adherence in SRs and SMEs, but not in ISCs; (iii) SRs exhibit unique adhesion dynamics where HbS fiber projections growing outward from the cell surface create multiple sites of adhesion; and (iv) polymerization stimulates adhesion and vice versa, thereby establishing the bidirectional coupling between the two processes. These findings offer insights into possible mechanistic pathways leading to vasoocclusion crisis. They also elucidate the processes underlying the onset of occlusion that may involve circulating reticulocytes, which are more abundant in hemolytic anemias due to robust compensatory erythropoiesis.
Journal Article
Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis
by
Suresh, Subra
,
Du, E
,
Dao, Ming
in
abnormal hemoglobin
,
anaerobic conditions
,
Anemia, Sickle Cell - genetics
2015
Significance A major challenge with in vitro investigations of the pathophysiological processes in sickle cell disease (SCD) has been the lack of a well-controlled microenvironment to mimic in vivo circulating conditions. The microfluidic platform developed here provides a quantitative assay of the kinetics of cell sickling, unsickling, and single-cell rheology. The ensuing alterations in the biorheological characteristics of sickle cells under hypoxic conditions show strong correlation with sickle hemoglobin level, hydroxyurea (HU) therapy, and cell density. These analyses provide cell-level perspectives of the clinical manifestations in SCD patients and offer unique diagnostic indicators of vasoocclusion and disease severity. These results could also provide alternative pathways to supplement current clinical practices to evaluate HU therapy.
We developed a microfluidics-based model to quantify cell-level processes modulating the pathophysiology of sickle cell disease (SCD). This in vitro model enabled quantitative investigations of the kinetics of cell sickling, unsickling, and cell rheology. We created short-term and long-term hypoxic conditions to simulate normal and retarded transit scenarios in microvasculature. Using blood samples from 25 SCD patients with sickle hemoglobin (HbS) levels varying from 64 to 90.1%, we investigated how cell biophysical alterations during blood flow correlated with hematological parameters, HbS level, and hydroxyurea (HU) therapy. From these measurements, we identified two severe cases of SCD that were also independently validated as severe from a genotype-based disease severity classification. These results point to the potential of this method as a diagnostic indicator of disease severity. In addition, we investigated the role of cell density in the kinetics of cell sickling. We observed an effect of HU therapy mainly in relatively dense cell populations, and that the sickled fraction increased with cell density. These results lend support to the possibility that the microfluidic platform developed here offers a unique and quantitative approach to assess the kinetic, rheological, and hematological factors involved in vasoocclusive events associated with SCD and to develop alternative diagnostic tools for disease severity to supplement other methods. Such insights may also lead to a better understanding of the pathogenic basis and mechanism of drug response in SCD.
Journal Article
Sickle cell disease
by
Gaston, Marilyn H.
,
Ohene-Frempong, Kwaku
,
Costa, Fernando F.
in
631/208/727/2000
,
692/699/1541/4036
,
692/700/139/1512
2018
Sickle cell disease (SCD) is a group of inherited disorders caused by mutations in
HBB
, which encodes haemoglobin subunit β. The incidence is estimated to be between 300,000 and 400,000 neonates globally each year, the majority in sub-Saharan Africa. Haemoglobin molecules that include mutant sickle β-globin subunits can polymerize; erythrocytes that contain mostly haemoglobin polymers assume a sickled form and are prone to haemolysis. Other pathophysiological mechanisms that contribute to the SCD phenotype are vaso-occlusion and activation of the immune system. SCD is characterized by a remarkable phenotypic complexity. Common acute complications are acute pain events, acute chest syndrome and stroke; chronic complications (including chronic kidney disease) can damage all organs. Hydroxycarbamide, blood transfusions and haematopoietic stem cell transplantation can reduce the severity of the disease. Early diagnosis is crucial to improve survival, and universal newborn screening programmes have been implemented in some countries but are challenging in low-income, high-burden settings.
Sickle cell disease includes genetic conditions that are caused by mutations in one of the genes encoding haemoglobin. Mutant haemoglobin molecules can polymerize, causing the red blood cells to acquire a characteristic crescent shape that gives the disease its name.
Journal Article
Risk Factors for Death in 632 Patients with Sickle Cell Disease in the United States and United Kingdom
by
Schraufnagel, Dean E.
,
Nouraie, Mehdi
,
Taylor, James G.
in
Adult
,
Anemia, Sickle Cell - mortality
,
Anemia, Sickle Cell - pathology
2014
The role of pulmonary hypertension as a cause of mortality in sickle cell disease (SCD) is controversial.
We evaluated the relationship between an elevated estimated pulmonary artery systolic pressure and mortality in patients with SCD. We followed patients from the walk-PHaSST screening cohort for a median of 29 months. A tricuspid regurgitation velocity (TRV)≥ 3.0 m/s cuttof, which has a 67-75% positive predictive value for mean pulmonary artery pressure ≥ 25 mm Hg was used. Among 572 subjects, 11.2% had TRV ≥ 3.0 m/sec. Among 582 with a measured NT-proBNP, 24.1% had values ≥ 160 pg/mL. Of 22 deaths during follow-up, 50% had a TRV ≥ 3.0 m/sec. At 24 months the cumulative survival was 83% with TRV ≥ 3.0 m/sec and 98% with TRV < 3.0 m/sec (p < 0.0001). The hazard ratios for death were 11.1 (95% CI 4.1-30.1; p < 0.0001) for TRV ≥ 3.0 m/sec, 4.6 (1.8-11.3; p = 0.001) for NT-proBNP ≥ 160 pg/mL, and 14.9 (5.5-39.9; p < 0.0001) for both TRV ≥ 3.0 m/sec and NT-proBNP ≥ 160 pg/mL. Age > 47 years, male gender, chronic transfusions, WHO class III-IV, increased hemolytic markers, ferritin and creatinine were also associated with increased risk of death.
A TRV ≥ 3.0 m/sec occurs in approximately 10% of individuals and has the highest risk for death of any measured variable. The study is registered in ClinicalTrials.gov with identifier: NCT00492531.
Journal Article
Severe Painful Vaso-Occlusive Crises and Mortality in a Contemporary Adult Sickle Cell Anemia Cohort Study
2013
Frequent painful vaso-occlusive crises (VOCs) were associated with mortality in the Cooperative Study of Sickle Cell Disease (CSSCD) over twenty years ago. Modern therapies for sickle cell anemia (SCA) like hydroxyurea are believed to have improved overall patient survival. The current study sought to determine the relevance of the association between more frequent VOCs and death and its relative impact upon overall mortality compared to other known risk factors in a contemporary adult SCA cohort.
Two hundred sixty four SCA adults were assigned into two groups based on patient reported outcomes for emergency department (ED) visits or hospitalizations for painful VOC treatment during the 12 months prior to evaluation.
Higher baseline hematocrit (p = 0.0008), ferritin (p = 0.005), and HDL cholesterol (p = 0.01) were independently associated with 1 or more painful VOCs requiring an ED visit or hospitalization for acute pain. During a median follow-up of 5 years, mortality was higher in the ED visit/hospitalization group (relative risk [RR] 2.68, 95% CI 1.1-6.5, p = 0.03). Higher tricuspid regurgitatant jet velocity (TRV) (RR 2.41, 95% CI 1.5-3.9, p < 0.0001), elevated ferritin (RR 4.00, 95% CI 1.8-9.0, p = 0.001) and lower glomerular filtration rate (RR=2.73, 95% CI 1.6-4.6, p < 0.0001) were also independent risk factors for mortality.
Severe painful VOCs remain a marker for SCA disease severity and premature mortality in a modern cohort along with other known risk factors for death including high TRV, high ferritin and lower renal function. The number of patient reported pain crises requiring healthcare utilization is an easily obtained outcome that could help to identify high risk patients for disease modifying therapies.
ClinicalTrials.gov NCT00011648 http://clinicaltrials.gov/
Journal Article
An Official American Thoracic Society Clinical Practice Guideline: Diagnosis, Risk Stratification, and Management of Pulmonary Hypertension of Sickle Cell Disease
by
Telen, Marilyn J.
,
Machado, Roberto F.
,
Kato, Gregory J.
in
Adult
,
American Thoracic Society Documents
,
Anemia, Sickle Cell - complications
2014
In adults with sickle cell disease (SCD), an increased tricuspid regurgitant velocity (TRV) measured by Doppler echocardiography, an increased serum N-terminal pro-brain natriuretic peptide (NT-pro-BNP) level, and pulmonary hypertension (PH) diagnosed by right heart catheterization (RHC) are independent risk factors for mortality.
A multidisciplinary committee was formed by clinician-investigators experienced in the management of patients with PH and/or SCD. Clinically important questions were posed, related evidence was appraised, and questions were answered with evidence-based recommendations. Target audiences include all clinicians who take care of patients with SCD.
Mortality risk stratification guides decision making. An increased risk for mortality is defined as a TRV equal to or greater than 2.5 m/second, an NT-pro-BNP level equal to or greater than 160 pg/ml, or RHC-confirmed PH. For patients identified as having increased mortality risk, we make a strong recommendation for hydroxyurea as first-line therapy and a weak recommendation for chronic transfusions as an alternative therapy. For all patients with SCD with elevated TRV alone or elevated NT-pro-BNP alone, and for patients with SCD with RHC-confirmed PH with elevated pulmonary artery wedge pressure and low pulmonary vascular resistance, we make a strong recommendation against PAH-specific therapy. However, for select patients with SCD with RHC-confirmed PH who have elevated pulmonary vascular resistance and normal pulmonary capillary wedge pressure, we make a weak recommendation for either prostacyclin agonist or endothelin receptor antagonist therapy and a strong recommendation against phosphodiesterase-5 inhibitor therapy.
Evidence-based recommendations for the management of patients with SCD with increased mortality risk are provided, but will require frequent reassessment and updating.
Journal Article
Serum albumin is independently associated with higher mortality in adult sickle cell patients: Results of three independent cohorts
2020
Sickle cell disease (SCD) impacts liver and kidney function as well as skin integrity. These complications, as well as the hyperinflammatory state of SCD, could affect serum albumin. Serum albumin has key roles in antioxidant, anti-inflammatory and antithrombotic pathways and maintains vascular integrity. In SCD, these pathways modulate disease severity and clinical outcomes. We used three independent SCD adult cohorts to assess clinical predictors of serum albumin as well its association with mortality. In 2553 SCD adult participants, the frequency of low (<35 g/L) serum albumin was 5%. Older age and lower hemoglobin (P <0.001) were associated with lower serum albumin in all three cohorts. In age and hemoglobin adjusted analysis, higher liver enzymes (P <0.05) were associated with lower serum albumin. In two of the three cohorts, lower kidney function as measured by Glomerular Filtration Rate (P<0.001) was associated with lower serum albumin. Lower serum albumin predicted higher risk of tricuspid regurgitation velocity [greater than or equal to] 2.5 m/s (OR = 1.1 per g/L, P [less than or equal to]0.01). In all three cohorts, patients with low serum albumin had higher mortality (adjusted HR [greater than or equal to]2.9, P [less than or equal to]0.003). This study confirms the role of serum albumin as a biomarker of disease severity and prognosis in patients with SCD. Albumin as a biomarker and possible mediator of SCD severity should be studied further.
Journal Article
Haptoglobin halts hemoglobin’s havoc
2009
Hemoglobin (Hb) is crucial to the function of the red blood cell. However, when it is released during intravascular hemolysis from the cell into blood plasma, it produces a state of NO depletion, oxidant stress, and vascular dysfunction, including hypertension. In their study reported in this issue of the JCI, Boretti and colleagues used canine and guinea pig models to demonstrate that pharmacological doses of glucocorticoid can increase the plasma levels of haptoglobin (Hp), the principal plasma-binding protein for free Hb (see the related article beginning on page 2271). Hp prevented Hb-induced hypertension and the generation of oxidant damage to the kidney. Neutralization of free Hb appears to be part of the downstream antiinflammatory properties of glucocorticoid.
Journal Article