Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
220
result(s) for
"Kato, Jiro"
Sort by:
ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress
by
Moss, Joel
,
Mashimo, Masato
,
Kato, Jiro
in
Adenosine diphosphate
,
Analysis of Variance
,
Animals
2013
Poly (ADP ribose) (PAR) formation catalyzed by PAR polymerase 1 in response to genotoxic stress mediates cell death due to necrosis and apoptosis. PAR glycohydrolase (PARG) has been thought to be the only enzyme responsible for hydrolysis of PAR in vivo. However, we show an alternative PAR-degradation pathway, resulting from action of ADP ribosyl-acceptor hydrolase (ARH) 3. PARG and ARH3, acting in tandem, regulate nuclear and cytoplasmic PAR degradation following hydrogen peroxide (H ₂O ₂) exposure. PAR is responsible for induction of parthanatos, a mechanism for caspase-independent cell death, triggered by apoptosis-inducing factor (AIF) release from mitochondria and its translocation to the nucleus, where it initiates DNA cleavage. PARG, by generating protein-free PAR from poly-ADP ribosylated protein, makes PAR translocation possible. A protective effect of ARH3 results from its lowering of PAR levels in the nucleus and the cytoplasm, thereby preventing release of AIF from mitochondria and its accumulation in the nucleus. Thus, PARG release of PAR attached to nuclear proteins, followed by ARH3 cleavage of PAR, is essential in regulating PAR-dependent AIF release from mitochondria and parthanatos.
Journal Article
Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase
by
Moss, Joel
,
Kistemaker, Hans V. A.
,
Feurer, Roxane
in
631/337/100/2285
,
631/337/458/2389
,
631/45/475
2017
ADP-ribosylation is a posttranslational modification that exists in monomeric and polymeric forms. Whereas the writers (e.g. ARTD1/PARP1) and erasers (e.g. PARG, ARH3) of poly-ADP-ribosylation (PARylation) are relatively well described, the enzymes involved in mono-ADP-ribosylation (MARylation) have been less well investigated. While erasers for the MARylation of glutamate/aspartate and arginine have been identified, the respective enzymes with specificity for serine were missing. Here we report that, in vitro, ARH3 specifically binds and demodifies proteins and peptides that are MARylated. Molecular modeling and site-directed mutagenesis of ARH3 revealed that numerous residues are critical for both the mono- and the poly-ADP-ribosylhydrolase activity of ARH3. Notably, a mass spectrometric approach showed that ARH3-deficient mouse embryonic fibroblasts are characterized by a specific increase in serine-ADP-ribosylation in vivo under untreated conditions as well as following hydrogen peroxide stress. Together, our results establish ARH3 as a serine mono-ADP-ribosylhydrolase and as an important regulator of the basal and stress-induced ADP-ribosylome.
Protein ADP-ribosylation has emerged as a key post translational modification that regulates several stress responses. Here the authors characterize ARH3 as a major serine-specific mono–ADP-ribosylhydrolase and use a proteomics approach to identify the cellular targets of ARH3.
Journal Article
TRIM23 mediates cGAS-induced autophagy in anti-HSV defense
2025
The cGAS-STING pathway, well-known to elicit interferon (IFN) responses, is also a key inducer of autophagy upon virus infection or other stimuli. Whereas the mediators for cGAS-induced IFN responses are well characterized, much less is known about how cGAS elicits autophagy. Here, we report that TRIM23, a unique TRIM protein harboring both ubiquitin E3 ligase and GTPase activity, is crucial for cGAS-STING-dependent antiviral autophagy. Genetic ablation of
TRIM23
impairs autophagic control of HSV-1 infection. HSV-1 infection or cGAS-STING stimulation induces TBK1-mediated TRIM23 phosphorylation at S39, which triggers TRIM23 autoubiquitination and GTPase activity and ultimately elicits autophagy. Fibroblasts from a patient with herpes simplex encephalitis heterozygous for a dominant-negative, kinase-inactivating
TBK1
mutation fail to activate autophagy by TRIM23 and cGAS-STING. Our results thus identify the cGAS-STING-TBK1-TRIM23 axis as a key autophagy defense pathway and may stimulate new therapeutic interventions for viral or inflammatory diseases.
The cGAS-STING pathway senses cytosolic DNA to activate interferon responses, but has also been implicated in autophagy induction. Here the authors show that, during herpes simplex virus infection, cGAS-induced autophagy is mediated by TBK1-induced TRIM23 phosphorylation and downstream signaling events to assist in antiviral immunity.
Journal Article
Enhanced sensitivity to cholera toxin in female ADP-ribosylarginine hydrolase (ARH1)-deficient mice
2018
Cholera toxin, an 84-kDa multimeric protein and a major virulence factor of Vibrio cholerae, uses the ADP-ribosyltransferase activity of its A subunit to intoxicate host cells. ADP-ribosylation is a posttranslational modification of proteins, in which the ADP-ribose moiety of NAD+ is transferred to an acceptor. In mammalian cells, ADP-ribosylation of acceptors appears to be reversible. ADP-ribosyltransferases (ARTs) catalyze the modification of acceptor proteins, and ADP-ribose-acceptor hydrolases (ARHs) cleave the ADP-ribose-acceptor bond. ARH1 specifically cleaves the ADP-ribose-arginine bond. We previously demonstrated a role for endogenous ARH1 in regulating the extent of cholera toxin-mediated fluid and electrolyte abnormalities in a mouse model of intoxication. Murine ARH1-knockout (KO) cells and ARH1-KO mice exhibited increased sensitivity to cholera toxin compared to their wild-type (WT) counterparts. In the current report, we examined the sensitivity to cholera toxin of male and female ARH1-KO and WT mice. Intestinal loops derived from female ARH1-KO mice when injected with cholera toxin showed increased fluid accumulation compared to male ARH1-KO mice. WT mice did not show gender differences in fluid accumulation, ADP-ribosylarginine content, and ADP-ribosyl Gαs levels. Injection of 8-Bromo-cAMP into the intestinal loops also increased fluid accumulation, however, there was no significant difference between female and male mice or in WT and KO mice. Female ARH1-KO mice showed greater amounts of ADP-ribosylated Gαs protein and increased ADP-ribosylarginine content both in whole intestine and in epithelial cells than did male ARH1-KO mice. These results demonstrate that female ARH1-KO mice are more sensitive to cholera toxin than male mice. Loss of ARH1 confers gender sensitivity to the effects of cholera toxin but not of cyclic AMP. These observations may in part explain the finding noted in some clinical reports of enhanced symptoms of cholera and/or diarrhea in women than men.
Journal Article
Poly(ADP-ribose) Polymerase 1 Mediates Rab5 Inactivation after DNA Damage
2022
Parthanatos is programmed cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1) after DNA damage. PARP1 acts by catalyzing the transfer of poly(ADP-ribose) (PAR) polymers to various nuclear proteins. PAR is subsequently cleaved, generating protein-free PAR polymers, which are translocated to the cytoplasm where they associate with cytoplasmic and mitochondrial proteins, altering their functions and leading to cell death. Proteomic studies revealed that several proteins involved in endocytosis bind PAR after PARP1 activation, suggesting endocytosis may be affected by the parthanatos process. Endocytosis is a mechanism for cellular uptake of membrane-impermeant nutrients. Rab5, a small G-protein, is associated with the plasma membrane and early endosomes. Once activated by binding GTP, Rab5 recruits its effectors to early endosomes and regulates their fusion. Here, we report that after DNA damage, PARP1-generated PAR binds to Rab5, suppressing its activity. As a result, Rab5 is dissociated from endosomal vesicles, inhibiting the uptake of membrane-impermeant nutrients. This PARP1-dependent inhibition of nutrient uptake leads to cell starvation and death. It thus appears that this mechanism may represent a novel parthanatos pathway.
Journal Article
Beneficial Effects of Exendin-4 on Experimental Polyneuropathy in Diabetic Mice
2011
The therapeutic potential of exendin-4, an agonist of the glucagon-like peptide-1 receptor (GLP-1R), on diabetic polyneuropathy (DPN) in streptozotocin (STZ)-induced diabetic mice was investigated.
The presence of the GLP-1R in lumbar dorsal root ganglion (DRG) was evaluated by immunohistochemical analyses. DRG neurons were dissected from C57BL6/J mice and cultured with or without Schwann cell-conditioned media in the presence or absence of GLP-1 (7-37) or exendin-4. Then neurite outgrowth was determined. In animal-model experiments, mice were made diabetic by STZ administration, and after 12 weeks of diabetes, exendin-4 (10 nmol/kg) was intraperitoneally administered once daily for 4 weeks. Peripheral nerve function was determined by the current perception threshold and motor and sensory nerve conduction velocity (MNCV and SNCV, respectively). Sciatic nerve blood flow (SNBF) and intraepidermal nerve fiber densities (IENFDs) also were evaluated.
The expression of the GLP-1R in DRG neurons was confirmed. GLP-1 (7-37) and exendin-4 significantly promoted neurite outgrowth of DRG neurons. Both GLP-1R agonists accelerated the impaired neurite outgrowth of DRG neurons cultured with Schwann cell-conditioned media that mimicked the diabetic condition. At the doses used, exendin-4 had no effect on blood glucose or HbA(1c) levels. Hypoalgesia and delayed MNCV and SNCV in diabetic mice were improved by exendin-4 without affecting the reduced SNBF. The decreased IENFDs in sole skins of diabetic mice were ameliorated by exendin-4.
Our findings indicate that exendin-4 ameliorates the severity of DPN, which may be achieved by its direct actions on DRG neurons and their axons.
Journal Article
Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats
2014
Although the initial healing stage involves a re-epithelialization in humans, diabetic foot ulceration (DFU) has been investigated using rodent models with wounds on the thigh skin, in which a wound contraction is initiated. In this study, we established a rodent model of DFU on the plantar skin and evaluated the therapeutic efficacy of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in this model.
The wounds made on the hind paws or thighs of streptozotocin induced diabetic or control rats were treated with BM-MSCs. Expression levels of phosphorylated focal adhesion kinase (pFAK), matrix metaroprotease (MMP)-2, EGF, and IGF-1, were evaluated in human keratinocytes, which were cultured in conditioned media of BM-MSCs (MSC-CM) with high glucose levels.
Re-epithelialization initiated the healing process on the plantar, but not on the thigh, skin. The therapy utilizing BM-MSCs ameliorated the delayed healing in diabetic rats. In the keratinocytes cultured with MSC-CM, the decreased pFAK levels in the high glucose condition were restored, and the MMP2, EGF, and IGF-1 levels increased.
Our study established a novel rat DFU model. The impaired healing process in diabetic rats was ameliorated by transplantation of BM-MSCs. This amelioration might be accounted for by the modification of keratinocyte functions.
Journal Article
Clinical outcome of latissimus dorsi reconstruction after wide resection of soft-tissue sarcoma
2020
BackgroundWe investigated the clinical outcomes of reconstruction using the latissimus dorsi (LD) flap after resection of soft-tissue sarcoma.Materials and methodsWe analyzed 19 patients. Free LD flap was performed in 11 patients and pedicle flap in eight patients. The mean follow-up period after the surgery was 60 months.ResultsThe mean age at diagnosis was 57 years. The mean tumor size was 9.8 cm. The median size of the LD flap was 140 × 100 mm. The mean surgical duration and bleeding were 510 min and 602 mL, respectively. Complications included partial skin and soft-tissue necrosis (n = 3) and wound dehiscence (n = 2). No additional free flap was not necessary for the closure of the defect due to the complications. The longer surgical duration was significantly associated with wound complications (P = 0.048). The 5-year survival rate was 80.7%, and the local recurrence-free survival rate was 89.2%. Two patients developed local recurrence, while 6 patients developed metastasis. None of the patients had any restrictions of daily life.ConclusionThe LD flap after surgical tumor resection in patients with soft-tissue sarcoma was useful for the coverage of soft tissue.
Journal Article
Anterolateral ligament reconstruction in addition to primary double-bundle anterior cruciate ligament reconstruction for grade 3 pivot shift improves residual knee instability during surgery
by
Murakami, Hideki
,
Kobayashi, Makoto
,
Yoshida, Masahito
in
Anterior cruciate ligament
,
Anterolateral ligament
,
Inertial sensor
2021
Purpose
High-grade pivot shift in the anterior cruciate ligament (ACL) injured knee is a risk factor for postoperative residual pivot shift. Procedures in addition to ACL reconstruction such as anterolateral ligament (ALL) reconstruction have been performed for patients with a high-risk of residual pivot shift. The aim of this study was to investigate the effect of the addition of ALL reconstruction to primary double-bundle ACL reconstruction in patients with preoperative high-grade pivot shift to improve stability as evaluated by quantitative measurement.
Methods
Patients with ACL injuries who showed preoperative grade 3 subjective pivot shift and who underwent primary double-bundle ACL reconstruction combined with ALL reconstructions were retrospectively enrolled. Anterior tibial translation (ATT) in the Lachman test, and acceleration and external rotational angular velocity (ERAV) in the pivot shift were measured as quantitative values. Quantitative values before surgical intervention for ACL-injured knees (ACLD) and uninjured contralateral knees (intact), after temporary fixation of the isolated ACL grafts (ACLR), and subsequently after temporary fixation of both ACL and ALL grafts (ACLR + ALLR) were measured with the patient under general anaesthesia.
Results
In total, 18 patients were included. The ATT was lower in ACLR and ACLR + ALLR than in intact (
P
= .008 and .005), while there was no significant difference between ACLR and ACLR + ALLR (
P
> .05). The acceleration of ACLR + ALLR was lower than that for ACLR (
P
= .008), while there was no significant difference between intact and ACLR or ACLR + ALLR (
P
> .05). The ERAV of ACLR was higher than that of intact (
P
< .001), while that of ACLR + ALLR was lower than that of ACLR (
P
< 0.001), and there was no significant difference in ERAV between intact and ACLR + ALLR (
P
> 0.05).
Conclusion
According to quantitative assessment of the pivot shift, the addition of ALL reconstruction to primary double-bundle ACL reconstruction improved residual knee instability and restored knee stability during surgery. Combination of ALL reconstruction with primary double-bundle ACL reconstruction was effective for patients with ACL injuries exhibiting a preoperative grade 3 subjective pivot shift.
Level of evidence
IV
Journal Article