Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "Katoh, Hirokazu"
Sort by:
Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
B2 SINE Copies Serve as a Transposable Boundary of DNA Methylation and Histone Modifications in the Mouse
More than one million copies of short interspersed elements (SINEs), a class of retrotransposons, are present in the mammalian genomes, particularly within gene-rich genomic regions. Evidence has accumulated that ancient SINE sequences have acquired new binding sites for transcription factors (TFs) through multiple mutations following retrotransposition, and as a result have rewired the host regulatory network during the course of evolution. However, it remains unclear whether currently active SINEs contribute to the expansion of TF binding sites. To study the mobility, expression, and function of SINE copies, we first identified about 2,000 insertional polymorphisms of SINE B1 and B2 families within Mus musculus. Using a novel RNA sequencing method designated as melRNA-seq, we detected the expression of SINEs in male germ cells at both the subfamily and genomic copy levels: the vast majority of B1 RNAs originated from evolutionarily young subfamilies, whereas B2 RNAs originated from both young and old subfamilies. DNA methylation and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses in liver revealed that polymorphic B2 insertions served as a boundary element inhibiting the expansion of DNA hypomethylated and histone hyperacetylated regions, and decreased the expression of neighboring genes. Moreover, genomic B2 copies were enriched at the boundary of various histone modifications, and chromatin insulator protein, CCCTC-binding factor, a well-known chromatin boundary protein, bound to >100 polymorphic and >10,000 non-polymorphic B2 insertions. These results suggest that the currently active B2 copies are mobile boundary elements that can modulate chromatin modifications and gene expression, and are likely involved in epigenomic and phenotypic diversification of the mouse species.
Cap Analysis of Gene Expression Clarifies Transcriptomic Divergence Within Monozygotic Twin Pairs
Phenotypic variation is the result of gene expression based on complex interaction between genetic and environmental factors. It is well known that genetic and environmental factors influence gene expression, but our understanding of their relative importance remains limited. To obtain a hint for the understanding of their contributions, we took advantage of monozygotic twins, as they share genetic and shared environmental factors but differ in nonshared factors, such as environmental differences and stochastic factors. In this study, we performed cap analysis of gene expression on three pairs of twins and clustered each individual based on their expression profiles of annotated genes. The dendrogram of annotated gene transcripts showed a monophyletic clade for each twin pair. We also analyzed the expression of retrotransposons, such as human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs), given their abundance in the genome. Clustering analyses demonstrated that HERV and LINE expression diverged even within monozygotic twin pairs. Thus, HERVs and LINEs are more susceptible to nonshared factors than annotated genes. Motif analysis of differentially expressed annotated genes suggests that specificity protein/Krüppel-like factor family transcription factors are involved in the expression divergence of annotated gene influenced by nonshared factors. Collectively, our findings suggest that expressions of annotated genes and retrotransposons are differently regulated, and that the expression of retrotransposons is more susceptible to nonshared factors than annotated genes.
C3H/HeNSlc mouse with low phospholipid transfer protein expression showed dyslipidemia
High serum levels of triglycerides (TG) and low levels of high-density lipoprotein cholesterol (HDL-C) increase the risk of coronary heart disease in humans. Herein, we first reported that the C3H/HeNSlc (C3H-S) mouse, a C3H/HeN-derived substrain, is a novel model for dyslipidemia. C3H-S showed hypertriglyceridemia and low total cholesterol (TC), HDL-C, and phospholipid (PL) concentrations. To identify the gene locus causing dyslipidemia in C3H-S, we performed genetic analysis. In F2 intercrosses between C3H-S mice and strains with normal serum lipids, the locus associated with serum lipids was identified as 163–168 Mb on chromosome 2. The phospholipid transfer protein ( Pltp ) gene was a candidate gene within this locus. Pltp expression and serum PLTP activity were markedly lower in C3H-S mice. Pltp expression was negatively correlated with serum TG and positively correlated with serum TC and HDL-C in F2 mice. Genome sequencing analysis revealed that an endogenous retrovirus (ERV) sequence called intracisternal A particle was inserted into intron 12 of Pltp in C3H-S. These results suggest that ERV insertion within Pltp causes aberrant splicing, leading to reduced Pltp expression in C3H-S. This study demonstrated the contribution of C3H-S to our understanding of the relationship between TG, TC, and PL metabolism via PLTP.
High-resolution spatiotemporal transcriptome analyses during cellularization of rice endosperm unveil the earliest gene regulation critical for aleurone and starchy endosperm cell fate specification
The major tissues of the cereal endosperm are the starchy endosperm (SE) in the inner and the aleurone layer (AL) at the outer periphery. The fates of the cells that comprise these tissues are determined according to positional information; however, our understanding of the underlying molecular mechanisms remains limited. Here, we conducted a high-resolution spatiotemporal analysis of the rice endosperm transcriptome during early cellularization. In rice, endosperm cellularization proceeds in a concentric pattern from a primary alveolus cell layer, such that developmental progression can be defined by the number of cell layers. Using laser-capture microdissection to obtain precise tissue sections, transcriptomic changes were followed through five histologically defined stages of cellularization from the syncytial to 3-cell layer (3 L) stage. In addition, transcriptomes were compared between the inner and the outermost peripheral cell layers. Large differences in the transcriptomes between stages and between the inner and the peripheral cells were found. SE attributes were expressed at the alveolus-cell-layer stage but were preferentially activated in the inner cell layers that resulted from periclinal division of the alveolus cell layer. Similarly, AL attributes started to be expressed only after the 2 L stage and were localized to the outermost peripheral cell layer. These results indicate that the first periclinal division of the alveolus cell layer is asymmetric at the transcriptome level, and that the cell-fate-specifying positional cues and their perception system are already operating before the first periclinal division. Several genes related to epidermal identity (i.e., type IV homeodomain-leucine zipper genes and wax biosynthetic genes) were also found to be expressed at the syncytial stage, but their expression was localized to the outermost peripheral cell layer from the 2 L stage onward. We believe that our findings significantly enhance our knowledge of the mechanisms underlying cell fate specification in rice endosperm.
Suppression of Borna Disease Virus Replication during Its Persistent Infection Using the CRISPR/Cas13b System
Borna disease virus (BoDV-1) is a bornavirus that infects the central nervous systems of various animal species, including humans, and causes fatal encephalitis. BoDV-1 also establishes persistent infection in neuronal cells and causes neurobehavioral abnormalities. Once neuronal cells or normal neural networks are lost by BoDV-1 infection, it is difficult to regenerate damaged neural networks. Therefore, the development of efficient anti-BoDV-1 treatments is important to improve the outcomes of the infection. Recently, one of the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) systems, CRISPR/Cas13, has been utilized as antiviral tools. However, it is still unrevealed whether the CRISPR/Cas13 system can suppress RNA viruses in persistently infected cells. In this study, we addressed this question using persistently BoDV-1-infected cells. The CRISPR/Cas13 system targeting viral mRNAs efficiently decreased the levels of target viral mRNAs and genomic RNA (gRNA) in persistently infected cells. Furthermore, the CRISPR/Cas13 system targeting viral mRNAs also suppressed BoDV-1 infection if the system was introduced prior to the infection. Collectively, we demonstrated that the CRISPR/Cas13 system can suppress BoDV-1 in both acute and persistent infections. Our findings will open the avenue to treat prolonged infection with RNA viruses using the CRISPR/Cas13 system.
Sequence Divergence and Retrotransposon Insertion Underlie Interspecific Epigenetic Differences in Primates
Changes in the epigenome can affect the phenotype without the presence of changes in the genomic sequence. Given the high identity of the human and chimpanzee genome sequences, a substantial portion of their phenotypic divergence likely arises from epigenomic differences between the two species. In this study, the transcriptome and epigenome were determined for induced pluripotent stem cells (iPSCs) generated from human and chimpanzee individuals. The transcriptome and epigenomes for trimethylated histone H3 at lysine-4 (H3K4me3) and at lysine-27 (H3K27me3) showed high levels of similarity between the two species. However, there were some differences in histone modifications. Although such regions, in general, did not show significant enrichment of interspecies nucleotide variations, gains in binding motifs for pluripotency-related transcription factors, especially POU5F1 and SOX2, were frequently found in species-specific H3K4me3 regions. We also revealed that species-specific insertions of retrotransposons, including the LTR5_Hs subfamily in human and a newly identified LTR5_Pt subfamily in chimpanzee, created species-specific H3K4me3 regions associated with increased expression of nearby genes. Human iPSCs have more species-specific H3K27me3 regions, resulting in more abundant bivalent domains. Only a limited number of these species-specific H3K4me3 and H3K27me3 regions overlap with species-biased enhancers in cranial neural crest cells, suggesting that differences in the epigenetic state of developmental enhancers appear late in development. Therefore, iPSCs serve as a suitable starting material for studying evolutionary changes in epigenome dynamics during development.
Expression of Intercellular Adhesion Molecule-1 and Lymphocyte Function-Associated Antigen-1 on Alveolar Macrophages in the Acute Stage of Radiation-Induced Lung Injury in Rats
We investigated the expression of intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) on alveolar macrophages and on lung tissue in the early stage of radiation-induced lung injury. Cells in the bronchoalveolar lavage and lung tissue were obtained from rats at various times between 1 and 8 weeks after 20 Gy of 60 Co γ irradiation of a hemithorax. These specimens were stained immunohistochemically with anti-ICAM-1 and anti-LFA-1α monoclonal antibodies. The expression of these factors was compared with that of a control group. The total number of alveolar macrophages in the bronchoalveolar lavage was significantly reduced from 1 to 3 weeks, and the number of neutrophils was significantly increased 2 and 3 weeks after irradiation. ICAM-1 and LFA-1 expression on alveolar macrophages was significantly increased starting 1 week after irradiation. The expression of ICAM-1 and LFA-1 on lung tissue was not elevated up to 8 weeks after irradiation. In conclusion, the increased expression of ICAM-1 and LFA-1 on alveolar macrophages as early as 1 week after irradiation suggests that adhesion molecules play a role in the development of radiation-induced lung injury.
Cloning of the cotA gene of Synechococcus PCC7942 and complementation of a cotA-less mutant of Synechocystis PCC6803 with chimeric genes of the two strains
cotA, a homologue of cemA that encodes a chloroplast envelope membrane protein, was cloned from Synechococcus PCC7942. The gene encodes a protein of 421 amino acids, which is similar in size to CotA of Synechocystis PCC6803 and CemA of liverwort and Chlamydomonas. There was significant sequence homology among these CotA and CemA in the C-terminal region but the homology was low in the N-terminal region. Sequencing of Synechococcus DNA in the cotA region revealed two other genes downstream of cotA, one of which is homologous to cobP and could be cotranscribed with cotA. A mutant (M48) was constructed by inactivating cotA in the wild-type (WT) Synechococcus. The mutant showed the same characteristics as the cotA-deletion mutant of Synechocystis (M29) and was unable to grow in a low sodium medium or at acidic pH under aeration with 3% CO^sub 2^in air (v/v). Synechococcus cotA did not comple-ment M29. Three chimeric cotA genes of the two cyanobacterial strains were constructed. One of these chimeric genes strongly and the other two weakly complemented the mutant.[PUBLICATION ABSTRACT]
Early Damage to Lung Tissue after Irradiation Detected by the Magnetic Resonance T2 Relaxation Time
We sought to determine whether nuclear magnetic resonance relaxation times of water in tissue would be useful to detect molecular damage in lung tissue within 2 weeks after irradiation. Tissue samples were obtained from the lungs of rats at various times between 1 and 14 days after exposure of a hemithorax to 20 Gy 60 Co γ irradiation. The spin-lattice relaxation time, T1, was measured by the inversion recovery method, and the spin-spin relaxation time, T2, was measured by both the Hahn spinecho (Hahn T2) and the Carr-Purcell-Meiboom-Gill (CPMG T2) methods. The T2 of lung tissue could be divided into two components, T2 fast (${\\rm T}_{2{\\rm f}}$) and T2 slow (${\\rm T}_{2{\\rm s}}$), which reflected changes in the intracellular and extracellular water, respectively. The CPMG ${\\rm T}_{2{\\rm f}}$ increased significantly 3 days after irradiation (66.3 ± 2.3 ms compared to 60.8 ± 2.6 ms), and the CPMG ${\\rm T}_{2{\\rm s}}$ increased significantly 1 day after irradiation (155 ± 11 ms compared to 138 ± 7 ms), prior to the observation of abnormalities upon examination of the lung by light microscopy. The CPMG T2 values increased further up to 14 days after irradiation when significant increases were observed in values for T1, Hahn T2 and water content. Our results indicate that the molecular derangement in irradiated lung tissue was detected by the CPMG T2 measurement in the very early stage, and that MRI may be superior to conventional radiographs for detecting the early damage to lung tissue after irradiation.