Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
142
result(s) for
"Kaufman, Darrell"
Sort by:
Revisiting the Holocene global temperature conundrum
2023
Recent global temperature reconstructions for the current interglacial period (the Holocene, beginning 11,700 years ago) have generated contrasting trends. This Review examines evidence from indicators and drivers of global change, as inferred from proxy records and simulated by climate models, to evaluate whether anthropogenic global warming was preceded by a long-term warming trend or by global cooling. Multimillennial-scale cooling before industrialization requires extra climate forcing and major climate feedbacks that are not well represented in most climate models at present. Conversely, global warming before industrialization challenges proxy-based reconstructions of past climate. The resolution of this conundrum has implications for contextualizing post-industrial warming and for understanding climate sensitivity to several forcings and their attendant feedbacks, including greenhouse gases. From a large variety of available evidence, we find support for a relatively mild millennial-scale global thermal maximum during the mid-Holocene, but more research is needed to firmly resolve the conundrum and to advance our understanding of slow-moving climate variability.
Examination of available evidence on whether anthropogenic global warming was preceded by a long-term warming trend or by global cooling provides support for a relatively mild millennial-scale global thermal maximum during the mid-Holocene.
Journal Article
Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era
by
Evans, Michael N
,
Valler, Veronika
,
Schurer, Andrew
in
Amplitude
,
Amplitudes
,
Anthropogenic factors
2019
Multidecadal surface temperature changes may be forced by natural as well as anthropogenic factors, or arise unforced from the climate system. Distinguishing these factors is essential for estimating sensitivity to multiple climatic forcings and the amplitude of the unforced variability. Here we present 2,000-year-long global mean temperature reconstructions using seven different statistical methods that draw from a global collection of temperature-sensitive palaeoclimate records. Our reconstructions display synchronous multidecadal temperature fluctuations that are coherent with one another and with fully forced millennial model simulations from the Coupled Model Intercomparison Project Phase 5 across the Common Era. A substantial portion of pre-industrial (1300–1800 ce) variability at multidecadal timescales is attributed to volcanic aerosol forcing. Reconstructions and simulations qualitatively agree on the amplitude of the unforced global mean multidecadal temperature variability, thereby increasing confidence in future projections of climate change on these timescales. The largest warming trends at timescales of 20 years and longer occur during the second half of the twentieth century, highlighting the unusual character of the warming in recent decades.
Journal Article
Mid-latitude net precipitation decreased with Arctic warming during the Holocene
by
Kaufman, Darrell S.
,
Shuman, Bryan N.
,
McKay, Nicholas P.
in
704/106/413
,
704/106/694
,
Anthropogenic factors
2019
The latitudinal temperature gradient between the Equator and the poles influences atmospheric stability, the strength of the jet stream and extratropical cyclones
1
–
3
. Recent global warming is weakening the annual surface gradient in the Northern Hemisphere by preferentially warming the high latitudes
4
; however, the implications of these changes for mid-latitude climate remain uncertain
5
,
6
. Here we show that a weaker latitudinal temperature gradient—that is, warming of the Arctic with respect to the Equator—during the early to middle part of the Holocene coincided with substantial decreases in mid-latitude net precipitation (precipitation minus evapotranspiration, at 30° N to 50° N). We quantify the evolution of the gradient and of mid-latitude moisture both in a new compilation of Holocene palaeoclimate records spanning from 10° S to 90° N and in an ensemble of mid-Holocene climate model simulations. The observed pattern is consistent with the hypothesis that a weaker temperature gradient led to weaker mid-latitude westerly flow, weaker cyclones and decreased net terrestrial mid-latitude precipitation. Currently, the northern high latitudes are warming at rates nearly double the global average
4
, decreasing the Equator-to-pole temperature gradient to values comparable with those in the early to middle Holocene. If the patterns observed during the Holocene hold for current anthropogenically forced warming, the weaker latitudinal temperature gradient will lead to considerable reductions in mid-latitude water resources.
A reduced gradient in temperatures between low and high latitudes during the Holocene led to drier mid-latitudes.
Journal Article
Native biodiversity collapse in the eastern Mediterranean
by
Dunne, Beata
,
Turapova, Elina
,
Kaufman, Darrell S.
in
Biodiversity
,
Ecosystem
,
Global Change and Conservation
2021
Global warming causes the poleward shift of the trailing edges of marine ectotherm species distributions. In the semi-enclosed Mediterranean Sea, continental masses and oceanographic barriers do not allow natural connectivity with thermophilic species pools: as trailing edges retreat, a net diversity loss occurs. We quantify this loss on the Israeli shelf, among the warmest areas in the Mediterranean, by comparing current native molluscan richness with the historical one obtained from surficial death assemblages. We recorded only 12% and 5% of historically present native species on shallow subtidal soft and hard substrates, respectively. This is the largest climate-driven regional-scale diversity loss in the oceans documented to date. By contrast, assemblages in the intertidal, more tolerant to climatic extremes, and in the cooler mesophotic zone show approximately 50% of the historical native richness. Importantly, approximately 60% of the recorded shallow subtidal native species do not reach reproductive size, making the shallow shelf a demographic sink. We predict that, as climate warms, this native biodiversity collapse will intensify and expand geographically, counteracted only by Indo-Pacific species entering from the Suez Canal. These assemblages, shaped by climate warming and biological invasions, give rise to a ‘novel ecosystem’ whose restoration to historical baselines is not achievable.
Journal Article
The 4.2 ka event is not remarkable in the context of Holocene climate variability
2024
The “4.2 ka event” is a commonly described abrupt climate excursion that occurred about 4200 years ago. However, the extent to which this event is coherent across regional and larger scales is unclear. To objectively assess climate excursions in the Holocene we compile 1142 paleoclimate datasets that span all continents and oceans and include a wide variety of archive and proxy types. We analyze these data to determine the timing, significance and spatial imprint of climate excursions using an objective method that quantifies local, regional and global significance. Site-level excursions in temperature and hydroclimate are common throughout the Holocene, but significant global-scale excursions are rare. The most prominent excursion occurred 8200 years ago, when cold and dry conditions formed a large, significant excursion centered in the North Atlantic. We find additional significant excursions between 1600 and 1000 years ago, which agree with tree-ring data and annual-scale paleoclimate reconstructions, adding confidence and context to our findings. In contrast, although some datasets show significant climate excursions 4200 years ago, they do not occur in large, coherent spatial regions. Consequently, like most other periods in the Holocene, the “4.2 ka event” is not a globally significant climate excursion.
A study of more than 1000 paleoclimate datasets reveals that the ”4.2 ka event” is not a globally significant climate excursion, unlike the prominent 8.2 ka event. In the Holocene, site-level excursions are common, but global-scale events are rare.
Journal Article
Holocene global mean surface temperature, a multi-method reconstruction approach
2020
An extensive new multi-proxy database of paleo-temperature time series (Temperature 12k) enables a more robust analysis of global mean surface temperature (GMST) and associated uncertainties than was previously available. We applied five different statistical methods to reconstruct the GMST of the past 12,000 years (Holocene). Each method used different approaches to averaging the globally distributed time series and to characterizing various sources of uncertainty, including proxy temperature, chronology and methodological choices. The results were aggregated to generate a multi-method ensemble of plausible GMST and latitudinal-zone temperature reconstructions with a realistic range of uncertainties. The warmest 200-year-long interval took place around 6500 years ago when GMST was 0.7 °C (0.3, 1.8) warmer than the 19th Century (median, 5th, 95th percentiles). Following the Holocene global thermal maximum, GMST cooled at an average rate −0.08 °C per 1000 years (−0.24, −0.05). The multi-method ensembles and the code used to generate them highlight the utility of the Temperature 12k database, and they are now available for future use by studies aimed at understanding Holocene evolution of the Earth system.
Journal Article
An extended Arctic proxy temperature database for the past 2,000 years
2014
Robust climate reconstructions of the most recent centuries and millennia are invaluable for placing modern warming in the context of natural variability. Here we present an extended and revised database (version 1.1) of proxy temperature records recently used to reconstruct Arctic temperatures for the past 2,000 years. The datasets are presented in a machine-readable format, and have been extended with the geochronologic data and consistently generated time-uncertain ensembles, which will be useful in future analyses of the influence of geochronologic uncertainty. A standardized description of the seasonality of the temperature response for each record, as reported by the original authors, is also included to motivate a more nuanced approach to integrating records with variable seasonal sensitivities. Despite the predominance of seasonal, rather than annual, temperature responders in the database, comparisons with the instrumental record of temperature suggest that, as a whole, the datasets best record annual temperature variability across the Arctic, especially in northeast Canada and Greenland, where the density of records is highest.
Design Type(s)
observation design • longitudinal data collection method • data integration
Measurement Type(s)
climate proxy
Technology Type(s)
data collection method
Factor Type(s)
Resolution • Period
Sample Characteristic(s)
Central Russia • Alaska • Canada • Scandinavia • Eastern Russia • Greenland • North Atlantic • Arctic Canada • Forest • Ice • Marine • Lake • Cave
Machine-accessible metadata file describing the reported data
(ISA-Tab format)
Journal Article