Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Kaune, Heidy"
Sort by:
Fish Oil Supplementation Attenuates Offspring’s Neurodevelopmental Changes Induced by a Maternal High-Fat Diet in a Rat Model
2025
Background/Objectives: A maternal high-fat diet (HFD) impairs brain structure in offspring. In turn, fish oil (FO) rich in n-3 polyunsaturated fatty acids (PUFAs) has neuroprotective effects. Therefore, we investigated whether maternal HFD exposure affected the neurological reflexes, neuron morphology, and n-3 PUFA levels in the cerebral cortex of the offspring and whether these effects were mitigated by maternal FO consumption. Methods: Female Sprague Dawley rats received a control diet (CD, 10% Kcal fat) or HFD (45% Kcal fat) five weeks before mating and throughout pregnancy and lactation. From mating, a subgroup of HFD was supplemented with 11.4% FO into the diet (HFD-FO). Neurological reflexes were evaluated from postnatal day (PND) 3 until PND20. Brains were removed at PND22 for neuron morphology analysis. Moreover, fatty acid composition and transcripts of genes encoding for factors associated with synapse transmission (SNAP-25), plasticity (BDNF), transport of DHA (MFSD2a), and inflammation (NF-κB and IL-1β) were quantified in prefrontal, motor, and auditory cortices. Results: FO diminished the effects of HFD on the number of thin and mushroom-shaped dendritic spines in the cerebral cortex in both sexes. It also reversed the HFD effects on the motor and auditory reflexes in female and male offspring, respectively. In males, FO up-regulated Bdnf transcript levels in the motor cortex compared with CD and HFD. In females, n-3 PUFAs were higher in HFD and HFD-FO than in CD in the auditory cortex. Conclusions: Our results highlight the protective role of maternal dietary n-3 PUFAs in counteracting the effects induced by HFD on the acquisition of neurological reflexes and neuronal morphology in the cerebral cortex of the offspring of both sexes.
Journal Article
Rescue of follicle development after oocyte-induced ovary dysfunction and infertility in a model of POI
by
Williams, Suzannah A.
,
Lo, Belinda K. M.
,
Kaune, Heidy
in
Cell and Developmental Biology
,
Detergents
,
Females
2023
The mechanisms and aetiology underlying the development of premature ovarian insufficiency (POI) are poorly understood. However, the oocyte clearly has a role as demonstrated by the Double Mutant (DM) mouse model where ovarian dysfunction (6 weeks) is followed by POI (3 months) due to oocyte-specific deletion of complex and hybrid N- and O-glycans. The ovaries of DM mice contain more primary follicles (3a stage) accompanied by fewer developing follicles, indicating a block in follicle development. To investigate this block, we first analysed early follicle development in postnatal (8-day), pre-pubertal (3-week) and post-pubertal (6-week and 3-month) DM (
C1galt1
F/F
Mgat1
F/F
:ZP3
Cre
) and Control (
C1galt1
F/F
Mgat1
F/F
) mice. Second, we investigated if transplantation of DM ovaries into a “normal” endocrine environment would restore follicle development. Third, we determined if replacing DM ovarian somatic cells would rescue development of DM oocytes. At 3-week, DM primary 3a follicles contain large oocytes accompanied by early development of a second GC layer and increased GC proliferation. At 6-week, DM primary 3a follicles contain abnormally large oocytes, accompanied with decreased GC proliferation. Transplantation of DM ovaries into a ‘normal’ endocrine environment did not restore normal follicle development. However, replacing somatic cells by generating reaggregated ovaries (ROs) did enable follicle development to progress and thus highlighted intra-ovarian factors were responsible for the onset of POI in DM females. Thus, these studies demonstrate oocyte-initiated altered communication between GCs and oocytes results in abnormal primary follicles which fail to progress and leads to POI.
Journal Article
Formation of multiple-oocyte follicles in culture
by
Christensen, Alice P.
,
Williams, Suzannah A.
,
Kaune, Heidy
in
Animal Genetics and Genomics
,
animal ovaries
,
Animals
2017
Basement membranes are found in every organ of the body. They provide structure and a selective filter for molecules. The ovary is no different with the follicular basal lamina (FBL) separating the granulosa and theca cells, facilitating regulation of the changing follicular environment providing appropriate conditions for the developing oocyte. The FBL is modified in C1galt1 Mutant mice (C1galt1FF:ZP3Cre) resulting from oocyte-specific deletion of C1galt1. Changes in the FBL lead to follicles joining to generate multiple-oocyte follicles (MOFs); where two or more oocytes are contained within a single follicle. This study aimed to determine if single-oocyte follicles could join in culture to become MOFs by co-culturing preantral follicles from Control or Mutant mice. Co-cultured follicles from both Control and Mutant follicles could superficially fuse (73% of Control follicle pairs; 84% of Mutant). Confocal microscopy revealed alterations in the organization of the space between follicles but was unable to discern MOFs. When co-cultured follicle pairs were embedded, sectioned and stained with haematoxylin, it was revealed that MOFs had formed from 50% of Mutant follicle pairs but none from Control follicle pairs. In conclusion, MOFs can form from C1galt1 Mutant follicles in culture and this model is a useful tool to elucidate the role of the oocyte in follicle development and the generation and function of the FBL. Furthermore, understanding the relationship between oocyte function and FBL generation will likely provide insight into optimizing conditions for follicle culture, which is important for fertility treatments and ART.
Journal Article
Maternal-fetal unit interactions and eutherian neocortical development and evolution
by
Kaune, Heidy
,
Montiel, Juan F.
,
Maliqueo, Manuel
in
Cerebral Cortex
,
Cerebral cortical development
,
Enlargement
2013
The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal-fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by \"non-classical\" endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict.
Journal Article