Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
9
result(s) for
"Kaunisto, MA"
Sort by:
A novel missense ATP1A2 mutation in a Finnish family with familial hemiplegic migraine type 2
by
Frants, R. R.
,
Wessman, M.
,
Kallela, M.
in
Amino Acid Sequence
,
Biological and medical sciences
,
Chromosomes, Human, Pair 1
2004
Familial hemiplegic migraine (FHM), a rare autosomal dominant subtype of migraine with aura, has been linked to two chromosomal loci, 19p13 and 1q23. Mutations in the Na+K+-ATPase alpha2 subunit gene, ATP1A2, on 1q23 have recently been shown to cause familial hemiplegic migraine type 2 (FHM2). We sequenced the coding regions of this gene in a Finnish chromosome 1q23-linked FHM family with associated symptoms such as coma and identified a novel A1033G mutation in exon 9. This mutation results in a threonine-to-alanine substitution at codon 345. This residue is located in a highly conserved N-terminal region of the M4-5 loop of the Na+,K+-ATPase. Furthermore, the T345A mutation co-segregated with the disorder in our family and was not present in 132 healthy Finnish control individuals. For these reasons it is most likely the FHM-causing mutation in this family.
Journal Article
Novel splice site CACNA1A mutation causing episodic ataxia type 2
2004
Episodic ataxia type 2 (EA-2) is an autosomal dominant neurological disorder, characterized by episodes of ataxia, vertigo, nausea, nystagmus, and fatigue, associated with acetazolamide responsiveness. The disease is caused by mutations in the P/Q-type calcium channel Ca(v)2.1 subunit gene, CACNA1A, located on chromosome 19p13.2. We analyzed a family with 13 affected individuals for linkage to this locus and reached a two-point maximum LOD score of 4.48. A novel CACNA1A mutation, IVS36-2A>G, at the 3' acceptor splice site of intron 36 was identified by sequencing. It is the first described CACNA1A acceptor splice site mutation and the most C-terminal EA-2-causing mutation reported to date.
Journal Article
FinnGen provides genetic insights from a well-phenotyped isolated population
by
Aalto-Setälä, Katriina
,
Saarentaus, Elmo
,
Jacob, Howard
in
45/43
,
631/208/205/2138
,
631/208/457/649/2219
2023
Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored
1
,
2
. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS),
P
< 2.6 × 10
–11
) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
Genome-wide association studies of individuals from an isolated population (data from the Finnish biobank study FinnGen) and consequent meta-analyses facilitate the identification of previously unknown coding variant associations for both rare and common diseases.
Journal Article
A causal effects of gut microbiota in the development of migraine
2023
BackgroundThe causal association between the gut microbiome and the development of migraine and its subtypes remains unclear.MethodsThe single nucleotide polymorphisms concerning gut microbiome were retrieved from the gene-wide association study (GWAS) of the MiBioGen consortium. The summary statistics datasets of migraine, migraine with aura (MA), and migraine without aura (MO) were obtained from the GWAS meta-analysis of the International Headache Genetics Consortium (IHGC) and FinnGen consortium. Inverse variance weighting (IVW) was used as the primary method, complemented by sensitivity analyses for pleiotropy and increasing robustness.ResultsIn IHGC datasets, ten, five, and nine bacterial taxa were found to have a causal association with migraine, MA, and MO, respectively, (IVW, all P < 0.05). Genus.Coprococcus3 and genus.Anaerotruncus were validated in FinnGen datasets. Nine, twelve, and seven bacterial entities were identified for migraine, MA, and MO, respectively. The causal association still exists in family.Bifidobacteriaceae and order.Bifidobacteriales for migraine and MO after FDR correction. The heterogeneity and pleiotropy analyses confirmed the robustness of IVW results.ConclusionOur study demonstrates that gut microbiomes may exert causal effects on migraine, MA, and MO. We provide novel evidence for the dysfunction of the gut-brain axis on migraine. Future study is required to verify the relationship between gut microbiome and the risk of migraine and its subtypes and illustrate the underlying mechanism between them.
Journal Article
Genome-wide meta-analysis conducted in three large biobanks expands the genetic landscape of lumbar disc herniations
2024
Given that lumbar disc herniation (LDH) is a prevalent spinal condition that causes significant individual suffering and societal costs, the genetic basis of LDH has received relatively little research. Our aim is to increase understanding of the genetic factors influencing LDH. We perform a genome-wide association analysis (GWAS) of LDH in the FinnGen project and in Estonian and UK biobanks, followed by a genome-wide meta-analysis to combine the results. In the meta-analysis, we identify 41 loci that have not been associated with LDH in prior studies on top of the 23 known risk loci. We detect LDH-associated loci in the vicinity of genes related to inflammation, disc-related structures, and synaptic transmission. Overall, our research contributes to a deeper understanding of the genetic factors behind LDH, potentially paving the way for the development of new therapeutics, prevention methods, and treatments for symptomatic LDH in the future.
A genome-wide association study suggests 41 previously unreported loci on top of the 23 known loci that influence the disease risk for lumbar disc herniations. Many of these loci harbour genes implicated in disc structure and inflammation, as well as genes related to the nervous system and nerve function.
Journal Article