Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
68
result(s) for
"Kaur, Amitinder"
Sort by:
Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects
2024
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Journal Article
Extracellular domain, hinge, and transmembrane determinants affecting surface CD4 expression of a novel anti-HIV chimeric antigen receptor (CAR) construct
by
Midkiff, Cecily C.
,
Zenere, Giorgio
,
Wimley, William C.
in
Amino Acid Motifs
,
Amino acids
,
Antigens
2024
Chimeric antigen receptor (CAR)-T cells have demonstrated clinical potential, but current receptors still need improvements to be successful against chronic HIV infection. In this study, we address some requirements of CAR motifs for strong surface expression of a novel anti-HIV CAR by evaluating important elements in the extracellular, hinge, and transmembrane (TM) domains. When combining a truncated CD4 extracellular domain and CD8α hinge/TM, the novel CAR did not express extracellularly but was detectable intracellularly. By shortening the CD8α hinge, CD4-CAR surface expression was partially recovered and addition of the LYC motif at the end of the CD8α TM fully recovered both intracellular and extracellular CAR expression. Mutation of LYC to TTA or TTC showed severe abrogation of CAR expression by flow cytometry and confocal microscopy. Additionally, we determined that CD4-CAR surface expression could be maximized by the removal of FQKAS motif at the junction of the extracellular domain and the hinge region. CD4-CAR surface expression also resulted in cytotoxic CAR T cell killing of HIV Env + target cells. In this study, we identified elements that are crucial for optimal CAR surface expression, highlighting the need for structural analysis studies to establish fundamental guidelines of CAR designs.
Journal Article
A combined adjuvant approach primes robust germinal center responses and humoral immunity in non-human primates
2023
Adjuvants and antigen delivery kinetics can profoundly influence B cell responses and should be critically considered in rational vaccine design, particularly for difficult neutralizing antibody targets such as human immunodeficiency virus (HIV). Antigen kinetics can change depending on the delivery method. To promote extended immunogen bioavailability and to present antigen in a multivalent form, native-HIV Env trimers are modified with short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide (pSer:alum). Here we explore the use of a combined adjuvant approach that incorporates pSer:alum-mediated antigen delivery with potent adjuvants (SMNP, 3M-052) in an extensive head-to-head comparison study with conventional alum to assess germinal center (GC) and humoral immune responses. Priming with pSer:alum plus SMNP induces additive effects that enhance the magnitude and persistence of GCs, which correlate with better GC-T
FH
cell help. Autologous HIV-neutralizing antibody titers are improved in SMNP-immunized animals after two immunizations. Over 9 months after priming immunization of pSer:alum with either SMNP or 3M-052, robust Env-specific bone marrow plasma cells (BM B
PC
) are observed. Furthermore, pSer-modification of Env trimer reduce targeting towards immunodominant non-neutralizing epitopes. The study shows that a combined adjuvant approach can augment humoral immunity by modulating immunodominance and shows promise for clinical translation.
Protein antigens, such as HIV envelope protein, require adjuvants for high immunogenicity. Here the authors show that a combined adjuvant approach with slow antigen delivery and potent ISCOMs adjuvant primes robust germinal center activity and humoral immunity in non-human primates. pSer-modified antigen shifts immunodominance to allow subdominant epitope-targeting of rare B cells.
Journal Article
Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques
by
Myers, Tereance A.
,
Grubaugh, Nathan D.
,
Ricciardi, Michael J.
in
631/250/255/2514
,
631/326/596/2555
,
631/61/51/1568
2018
Zika virus (ZIKV) infection of pregnant women is associated with pathologic complications of fetal development. Here, we infect pregnant rhesus macaques (
Macaca mulatta
) with a minimally passaged ZIKV isolate from Rio de Janeiro, where a high rate of fetal development complications was observed. The infection of pregnant macaques with this virus results in maternal viremia, virus crossing into the amniotic fluid (AF), and in utero fetal deaths. We also treated three additional ZIKV-infected pregnant macaques with a cocktail of ZIKV-neutralizing human monoclonal antibodies (nmAbs) at peak viremia. While the nmAbs can be effective in clearing the virus from the maternal sera of treated monkeys, it is not sufficient to clear ZIKV from AF. Our report suggests that ZIKV from Brazil causes fetal demise in non-human primates (NHPs) without additional mutations or confounding co-factors. Treatment with a neutralizing anti-ZIKV nmAb cocktail is insufficient to fully stop vertical transmission.
Zika virus (ZIKV) infection in pregnant women has been associated with fetal developmental defects. Here, the authors show that a Brazilian ZIKV isolate causes fetal demise in non-human primates and that antibody treatment at time of peak viremia is insufficient to clear ZIKV replication from amniotic fluid.
Journal Article
Maternal CD4⁺ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission
by
Tran, Dollnovan
,
Lauck, Michael
,
Wussow, Felix
in
Animals
,
Antibodies, Viral - immunology
,
Biological Sciences
2015
Elucidation of maternal immune correlates of protection against congenital cytomegalovirus (CMV) is necessary to inform future vaccine design. Here, we present a novel rhesus macaque model of placental rhesus CMV (rhCMV) transmission and use it to dissect determinants of protection against congenital transmission following primary maternal rhCMV infection. In this model, asymptomatic intrauterine infection was observed following i.v. rhCMV inoculation during the early second trimester in two of three rhCMV-seronegative pregnant females. In contrast, fetal loss or infant CMV-associated sequelae occurred in four rhCMV-seronegative pregnant macaques that were CD4⁺ T-cell depleted at the time of inoculation. Animals that received the CD4⁺ T-cell–depleting antibody also exhibited higher plasma and amniotic fluid viral loads, dampened virus-specific CD8⁺ T-cell responses, and delayed production of autologous neutralizing antibodies compared with immunocompetent monkeys. Thus, maternal CD4⁺ T-cell immunity during primary rhCMV infection is important for controlling maternal viremia and inducing protective immune responses that prevent severe CMV-associated fetal disease.
Journal Article
Relationship of maternal cytomegalovirus-specific antibody responses and viral load to vertical transmission risk following primary maternal infection in a rhesus macaque model
2023
Cytomegalovirus (CMV) is the most common congenital infection and cause of birth defects worldwide. Primary CMV infection during pregnancy leads to a higher frequency of congenital CMV (cCMV) than maternal re-infection, suggesting that maternal immunity confers partial protection. However, poorly understood immune correlates of protection against placental transmission contributes to the current lack of an approved vaccine to prevent cCMV. In this study, we characterized the kinetics of maternal plasma rhesus CMV (RhCMV) viral load (VL) and RhCMV-specific antibody binding and functional responses in a group of 12 immunocompetent dams with acute, primary RhCMV infection. We defined cCMV transmission as RhCMV detection in amniotic fluid (AF) by qPCR. We then leveraged a large group of past and current primary RhCMV infection studies in late-first/early-second trimester RhCMV-seronegative rhesus macaque dams, including immunocompetent (n = 15), CD4+ T cell-depleted with (n = 6) and without (n = 6) RhCMV-specific polyclonal IgG infusion before infection to evaluate differences between RhCMV AF-positive and AF-negative dams. During the first 3 weeks after infection, the magnitude of RhCMV VL in maternal plasma was higher in AF-positive dams in the combined cohort, while RhCMV glycoprotein B (gB)- and pentamer-specific binding IgG responses were lower magnitude compared to AF-negative dams. However, these observed differences were driven by the CD4+ T cell-depleted dams, as there were no differences in plasma VL or antibody responses between immunocompetent AF-positive vs AF-negative dams. Overall, these results suggest that levels of neither maternal plasma viremia nor humoral responses are associated with cCMV following primary maternal infection in healthy individuals. We speculate that other factors related to innate immunity are more important in this context as antibody responses to acute infection likely develop too late to influence vertical transmission. Yet, pre-existing CMV glycoprotein-specific and neutralizing IgG may provide protection against cCMV following primary maternal CMV infection even in high-risk, immunocompromised settings.
Journal Article
Protective effect of pre-existing natural immunity in a nonhuman primate reinfection model of congenital cytomegalovirus infection
2023
Congenital cytomegalovirus (cCMV) is the leading infectious cause of neurologic defects in newborns with particularly severe sequelae in the setting of primary CMV infection in the first trimester of pregnancy. The majority of cCMV cases worldwide occur after non-primary infection in CMV-seropositive women; yet the extent to which pre-existing natural CMV-specific immunity protects against CMV reinfection or reactivation during pregnancy remains ill-defined. We previously reported on a novel nonhuman primate model of cCMV in rhesus macaques where 100% placental transmission and 83% fetal loss were seen in CD4 + T lymphocyte-depleted rhesus CMV (RhCMV)-seronegative dams after primary RhCMV infection. To investigate the protective effect of preconception maternal immunity, we performed reinfection studies in CD4+ T lymphocyte-depleted RhCMV-seropositive dams inoculated in late first / early second trimester gestation with RhCMV strains 180.92 ( n = 2), or RhCMV UCD52 and FL-RhCMVΔRh13.1/SIV gag , a wild-type-like RhCMV clone with SIV gag inserted as an immunological marker, administered separately ( n = 3). An early transient increase in circulating monocytes followed by boosting of the pre-existing RhCMV-specific CD8+ T lymphocyte and antibody response was observed in the reinfected dams but not in control CD4+ T lymphocyte-depleted dams. Emergence of SIV Gag-specific CD8+ T lymphocyte responses in macaques inoculated with the FL-RhCMVΔRh13.1/SIV gag virus confirmed reinfection. Placental transmission was detected in only one of five reinfected dams and there were no adverse fetal sequelae. Viral whole genome, short-read, deep sequencing analysis confirmed transmission of both reinfection RhCMV strains across the placenta with ~30% corresponding to FL-RhCMVΔRh13.1/SIV gag and ~70% to RhCMV UCD52, consistent with the mixed human CMV infections reported in infants with cCMV. Our data showing reduced placental transmission and absence of fetal loss after non-primary as opposed to primary infection in CD4+ T lymphocyte-depleted dams indicates that preconception maternal CMV-specific CD8+ T lymphocyte and/or humoral immunity can protect against cCMV infection.
Journal Article
Rhesus Cytomegalovirus-encoded Fcγ-binding glycoproteins facilitate viral evasion from IgG-mediated humoral immunity
2025
Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro, but their role in infection and pathogenesis is unknown. To examine their in vivo function in an animal model evolutionarily closely related to humans, we identified and characterized Rh05, Rh152/151 and Rh173 as the complete set of vFcγRs encoded by rhesus CMV (RhCMV). Each one of these proteins displays functional similarities to their prospective HCMV orthologs with respect to antagonizing host FcγR activation in vitro. When RhCMV-naïve male rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma DNAemia levels and anti-RhCMV antibody responses were comparable to wildtype infections of both male and female animals. However, the duration of plasma DNAemia was significantly shortened in immunocompetent, but not in CD4 + T cell-depleted animals. Since vFcγRs were not required for superinfection of rhesus macaques, we conclude that these proteins can prolong lytic replication during primary infection by evading virus-specific adaptive immune responses, particularly antibodies.
The role of viral Fc-gamma receptors in rhesus cytomegalovirus (RhCMV) infection is unclear. Here, the authors characterized RhCMV vFcγRs and report that their deletion did not affect virus replication, tropism or superinfection in rhesus macaques but increased susceptibility of the virus to antibody control.
Journal Article
In vitro and in vivo characterization of a recombinant rhesus cytomegalovirus containing a complete genome
by
E, Xiaofei
,
Picker, Louis J.
,
Estes, Jacob D.
in
Animal models
,
Animal research models
,
Animals
2020
Cytomegaloviruses (CMVs) are highly adapted to their host species resulting in strict species specificity. Hence, in vivo examination of all aspects of CMV biology employs animal models using host-specific CMVs. Infection of rhesus macaques (RM) with rhesus CMV (RhCMV) has been established as a representative model for infection of humans with HCMV due to the close evolutionary relationships of both host and virus. However, the only available RhCMV clone that permits genetic modifications is based on the 68–1 strain which has been passaged in fibroblasts for decades resulting in multiple genomic changes due to tissue culture adaptations. As a result, 68–1 displays reduced viremia in RhCMV-naïve animals and limited shedding compared to non-clonal, low passage isolates. To overcome this limitation, we used sequence information from primary RhCMV isolates to construct a full-length (FL) RhCMV by repairing all mutations affecting open reading frames (ORFs) in the 68–1 bacterial artificial chromosome (BAC). Inoculation of adult, immunocompetent, RhCMV-naïve RM with the reconstituted virus resulted in significant viremia in the blood similar to primary isolates of RhCMV and furthermore led to high viral genome copy numbers in many tissues at day 14 post infection. In contrast, viral dissemination was greatly reduced upon deletion of genes also lacking in 68–1. Transcriptome analysis of infected tissues further revealed that chemokine-like genes deleted in 68–1 are among the most highly expressed viral transcripts both in vitro and in vivo consistent with an important immunomodulatory function of the respective proteins. We conclude that FL-RhCMV displays in vitro and in vivo characteristics of a wildtype virus while being amenable to genetic modifications through BAC recombineering techniques.
Journal Article
Natural history of postnatal rhesus cytomegalovirus shedding by dams and acquisition by infant rhesus monkeys
by
Itell, Hannah L.
,
Kaur, Amitinder
,
Permar, Sallie R.
in
Babies
,
Biology and Life Sciences
,
Blood
2018
Human infants frequently acquire human cytomegalovirus (HCMV) through breastfeeding, resulting in persistent high-level viral shedding in saliva and urine and infectivity to others, including pregnant women. Thus, vaccination to interrupt postnatal HCMV transmission is an attractive strategy to prevent HCMV spread and congenital infection. Rhesus CMV (RhCMV) in nonhuman primates is a valuable model for the study of immune strategies to prevent CMV transmission. Although rhesus monkeys typically acquire RhCMV before 1 year of age, the timing and mode of natural infant RhCMV transmission remain unknown.
We followed 5 RhCMV-seropositive dams and their infants from birth until weaning, approximately 6 months later. RhCMV DNA levels in plasma, breast milk, saliva, and urine were measured every 2 weeks by quantitative PCR. RhCMV-specific T cell responses in peripheral blood and breast milk were measured by interferon gamma ELISpot assays. Serum IgG antibody levels were measured by ELISA.
Four of five postpartum RhCMV-seropositive mothers had intermittent, low-level RhCMV shedding in breast milk, whereas all had high-magnitude RhCMV shedding in saliva and urine. The kinetics of maternal blood RhCMV-specific T cell responses and viral shedding in urine and saliva did not strongly associate, though dams with consistently high systemic RhCMV-specific T cell responses tended to have undetectable RhCMV shedding in breast milk. All RhCMV-exposed infants had intermittent, low-level RhCMV shedding in saliva during the lactation period, with minimal systemic RhCMV-specific T cell responses.
Despite exposure to RhCMV shedding in breast milk and other maternal fluids, postnatal mother-to-child RhCMV transmission appears to be less efficient than that of HCMV. A greater understanding of the determinants of RhCMV transmission and its usefulness as a model of HCMV mucosal acquisition may provide insight into strategies to prevent HCMV infections in humans.
Journal Article