Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
172
result(s) for
"Kawamura, Seiji"
Sort by:
Significance of Fabry-Perot Cavities for Space Gravitational Wave Antenna DECIGO
by
Umemura, Kurumi
,
Ishikawa, Tomohiro
,
Ando, Masaki
in
Astronomical research
,
Astronomy
,
Binary stars
2024
DECIGO is a future Japanese project for the detection of gravitational waves in space. To conduct various scientific missions, including the verification of cosmic inflation through the detection of primordial gravitational waves as the main objective, DECIGO is designed to have high sensitivity in the frequency band from 0.1 to 10 Hz, with arms of length 1000 km. Furthermore, the use of the Fabry-Perotcavity in these arms has been established for the DECIGO project. In this paper, we scrutinize the significance of the Fabry-Perot cavity for promoting this project, with a focus on the possibility of observing gravitational waves from cosmic inflation and binary compact star systems as indicators. The results show that using the Fabry-Perot cavity is extremely beneficial for detecting them, and it is anticipated to enable the opening of a new window in gravitational wave astronomy.
Journal Article
Improvement of the Target Sensitivity in DECIGO by Optimizing Its Parameters for Quantum Noise Including the Effect of Diffraction Loss
by
Morimoto, Taigen
,
Akutsu, Tomotada
,
Ando, Masaki
in
DECIGO
,
diffraction loss
,
gravitational waves
2021
The DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO) is the future Japanese, outer space gravitational wave detector. We previously set the default design parameters to provide a good target sensitivity to detect the primordial gravitational waves (GWs). However, the updated upper limit of the primordial GWs by the Planck observations motivated us toward further optimization of the target sensitivity. Previously, we had not considered optical diffraction loss due to the very long cavity length. In this paper, we optimize various DECIGO parameters by maximizing the signal-to-noise ratio (SNR) of the primordial GWs to quantum noise, including the effects of diffraction loss. We evaluated the power spectrum density for one cluster in DECIGO utilizing the quantum noise of one differential Fabry–Perot interferometer. Then we calculated the SNR by correlating two clusters in the same position. We performed the optimization for two cases: the constant mirror-thickness case and the constant mirror-mass case. As a result, we obtained the SNR dependence on the mirror radius, which also determines various DECIGO parameters. This result is the first step toward optimizing the DECIGO design by considering the practical constraints on the mirror dimensions and implementing other noise sources.
Journal Article
Optimization of Design Parameters for Gravitational Wave Detector DECIGO Including Fundamental Noises
2022
The DECi-hertz Interferometer Gravitational-Wave Observatory (DECIGO) is a space gravitational wave (GW) detector. DECIGO was originally designed to be sensitive enough to observe primordial GW background (PGW). However, due to the lowered upper limit of the PGW by the Planck observation, further improvement of the target sensitivity of DECIGO is required. In the previous studies, DECIGO’s parameters were optimized to maximize the signal-to-noise ratio (SNR) of the PGW to quantum noise including the effect of diffraction loss. To simulate the SNR more realistically, we optimize DECIGO’s parameters considering the GWs from double white dwarfs (DWDs) and the thermal noise of test masses. We consider two cases of the cutoff frequency of GWs from DWDs. In addition, we consider two kinds of thermal noise: thermal noise in a residual gas and internal thermal noise. To investigate how the mirror geometry affects the sensitivity, we calculate it by changing the mirror mass, keeping the mirror thickness, and vice versa. As a result, we obtained the optimums for the parameters that maximize the SNR that depends on the mirror radius. This result shows that a thick mirror with a large radius gives a good SNR and enables us to optimize the design of DECIGO based on the feasibility study of the mirror size in the future.
Journal Article
Optimization of Quantum Noise in Space Gravitational-Wave Antenna DECIGO with Optical-Spring Quantum Locking Considering Mixture of Vacuum Fluctuations in Homodyne Detection
by
Umemura, Kurumi
,
Tsuji, Kenji
,
Shimizu, Ryuma
in
Astronomical research
,
Astronomy
,
Configuration management
2023
Quantum locking using optical spring and homodyne detection has been devised to reduce the quantum noise that limits the sensitivity of the DECIGO, a space-based gravitational-wave antenna in the frequency band around 0.1 Hz for the detection of primordial gravitational waves. The reduction in the upper limit of energy density ΩGW from 2×10−15 to 1×10−16, as inferred from recent observations, necessitates improved sensitivity in the DECIGO to meet its primary science goals. To accurately evaluate the effectiveness of this method, this paper considers a detection mechanism that takes into account the influence of vacuum fluctuations on homodyne detection. In addition, an advanced signal processing method is devised to efficiently utilize signals from each photodetector, and design parameters for this configuration are optimized for the quantum noise. Our results show that this method is effective in reducing quantum noise, despite the detrimental impact of vacuum fluctuations on its sensitivity.
Journal Article
Quantum Noise in a Fabry-Perot Interferometer Including the Influence of Diffraction Loss of Light
by
Morimoto, Taigen
,
Akutsu, Tomotada
,
Ando, Masaki
in
Design optimization
,
diffraction loss
,
Electric fields
2021
The DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is designed to detect gravitational waves at frequencies between 0.1 and 10 Hz. In this frequency band, one of the most important science targets is the detection of primordial gravitational waves. DECIGO plans to use a space interferometer with optical cavities to increase its sensitivity. For evaluating its sensitivity, diffraction of the laser light has to be adequately considered. There are two kinds of diffraction loss: leakage loss outside the mirror and higher-order mode loss. These effects are treated differently inside and outside of the Fabry-Perot (FP) cavity. We estimated them under the conditions that the FP cavity has a relatively high finesse and the higher-order modes do not resonate. As a result, we found that the effects can be represented as a reduction of the effective finesse of the cavity with regard to quantum noise. This result is useful for optimization of the design of DECIGO. This method is also applicable to any FP cavities with a relatively small beam cut and the finesse sufficiently higher than 1.
Journal Article
Current status of space gravitational wave antenna DECIGO and B-DECIGO
2021
Abstract
The Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is a future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could have been produced during the inflationary period right after the birth of the Universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the Universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry–Pérot Michelson interferometers with an arm length of 1000 km. Three DECIGO clusters will be placed far from each other, and the fourth will be placed in the same position as one of the other three to obtain correlation signals for the detection of primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder for DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand multi-messenger astronomy.
Journal Article
High accuracy measurement of the quantum efficiency using radiation pressure
2012
Preliminary investigations of a novel method to measure the laser power accurately using the radiation pressure are reported here. We aim to measure the laser power within one percent error to then obtain an accurate quantum efficiency (QE) of a photodiode. Since the typical error of QE is still a few percent due to the uncertainty of measured laser power, an accurate measurement of the laser power contributes a precise estimation of the QE. Our experimental setup is a suspended Michelson interferometer, where one of the pendulums is small, consisting of a 20-mg mirror and 10-um fiber. The motion of this small mirror is very sensitive to changes in radiation pressure. Due to this, the number of photons in the incident (intensity modulated) laser beam can be counted accurately by measuring displacement of the mirror. We set up the apparatus, and have found a suitable frequency band for the accurate measurement. Displacement caused by the radiation pressure was observed using the feedback signal.
Journal Article
Nowcasting Multiparameter Phased-Array Weather Radar (MP-PAWR) Echoes of Localized Heavy Precipitation Using a 3D Recurrent Neural Network Trained with an Adversarial Technique
2023
We present nowcasts of sudden heavy rains on meso- γ scales (2–20 km) using the high spatiotemporal resolution of a multiparameter phased-array weather radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-min lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on long short-term memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 s. The model uses radar reflectivity at horizontal polarization Z H and the differential reflectivity. The input parameters are defined in a volume of 64 × 64 × 8 km 3 with the lowest level at 1.9 km and a resolution of 0.4 × 0.4 × 0.25 km 3 . The prediction is a 10-min sequence of Z H at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).
Journal Article
LIGO: The Laser Interferometer Gravitational-Wave Observatory
by
Shoemaker, David
,
Spero, Robert E.
,
Whitcomb, Stanley E.
in
Astronomy
,
Birth Rate
,
Black holes
1992
The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics of gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.
Journal Article
Multifrequency observations of Polar Mesosphere Summer Echoes using Alaskan radar facilities: Comparisons and scattering calculations
by
Kelley, Michael C.
,
Ramos, Camilo
,
Groves, Keith M.
in
Absorption
,
Atmospheric sciences
,
Mesoclimatology
2009
We present polar mesospheric radar observations at three frequency bands (MF/HF/VHF) and eight radar frequencies: 2.43, 3.3, 4.53, 4.9, 7.6, 28, 50, and 139 MHz, in order to better understand the well known but still not fully understood Polar Mesosphere Summer Echoes (PMSE). The echo morphology at the different frequencies is described by means of case studies where PMSE events were observed concurrently using at least two radar systems deployed over the Alaskan central region. The identity of MF and HF radar echoes as PMSE is resolved for the first time by means of simultaneous measurements made with VHF radars, the reference sensors employed traditionally for PMSE studies. On the basis of echo duration and radar reflectivity estimates, we suggest that low‐power HF radars would be more appropriate for PMSE monitoring. This is confirmed by a radar target analysis of turbulent scattering mechanisms in the polar summer mesosphere. MF radars show highly organized PMSE layers quite often but are more susceptible to ionospheric absorption and higher‐altitude returns associated with geomagnetic activity. Both phenomena produce a blanking effect in MF PMSE, which at times can persist for hours. HF and VHF radars are less affected by absorption events, but the PMSE echoes become weaker as the radar frequency increases.
Journal Article