Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Kawsar, Ferdaus"
Sort by:
e-ESAS: Evolution of a participatory design-based solution for breast cancer (BC) patients in rural Bangladesh
2015
Healthcare facility is scarce for rural women in the developing world. The situation is worse for patients who are suffering from diseases that require long-term feedback-oriented monitoring such as breast cancer. Lack of motivation to go to the health centers on patients’ side due to sociocultural barriers, financial restrictions and transportation hazards results in inadequate data for proper assessment. Fortunately, mobile phones have penetrated the masses even in rural communities of the developing countries. In this scenario, a mobile phone-based remote symptom monitoring system (RSMS) with inspirational videos can serve the purpose of both patients and doctors. Here, we present the findings of our field study conducted on 39 breast cancer patients in rural Bangladesh. Based on the results of extensive field studies, we have categorized the challenges faced by patients in different phases of the treatment process. As a solution, we have designed, developed and deployed e-ESAS—the first mobile-based RSMS in rural context. Along with the detail need assessment of such a system, we describe the evolution of e-ESAS and the deployment results. We have included the unique and useful design lessons that we learned as e-ESAS evolved through participatory design process. The findings show how e-ESAS addresses several challenges faced by patients and doctors and positively impact their lives.
Journal Article
Computational approaches for remote monitoring of symptoms and activities
We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases.
Dissertation
Development of an Algorithm for Identifying Changes in System Dynamics from Time Series
2020
The development of an algorithm with related mathematical concepts and supporting hypothesis for detecting changes in system dynamics from time series along with empirical analysis and theoretical justification is presented. For the method, changes in the second largest eigenvalue of Markov Chain (SLEM) or mixing rate, is observed as an indicator of the changes in system dynamics. The Markov chain is created from empirical transition probabilities of a time series. The method is developed for the application of detecting hemorrhage from arterial blood pressure in anesthetized swine. The rationale of the change in the SLEM is investigated empirically with an artificial blood pressure model and, by studying correlations with other measures such as smoothness of time series, and density of the transition probability matrix of the Markov chain. The mathematical analysis shows that the change in the SLEM is a consequence of the change in the transition probabilities between different states and reflects information about the system dynamics.