Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
5,456
result(s) for
"Ke, Jing"
Sort by:
The origin and evolution of lignin biosynthesis
2010
Lignin, a phenolic polymer derived mainly from hydroxycinnamyl alcohols, is ubiquitously present in tracheophytes. The development of lignin biosynthesis has been considered to be one of the key factors that allowed land plants to flourish in terrestrial ecosystems. Lignin provides structural rigidity for tracheophytes to stand upright, and strengthens the cell wall of their water-conducting tracheary elements to withstand the negative pressure generated during transpiration. In this review, we discuss a number of aspects regarding the origin and evolution of lignin biosynthesis during land plant evolution, including the establishment of its monomer biosynthetic scaffold, potential precursors to the lignin polymer, as well as the emergence of the polymerization machinery and regulatory system. The accumulated knowledge on the topic, as summarized here, provides us with an evolutionary view on how this complex metabolic system emerged and developed.
Journal Article
Adaptive mechanisms of plant specialized metabolism connecting chemistry to function
2021
As sessile organisms, plants evolved elaborate metabolic systems that produce a plethora of specialized metabolites as a means to survive challenging terrestrial environments. Decades of research have revealed the genetic and biochemical basis for a multitude of plant specialized metabolic pathways. Nevertheless, knowledge is still limited concerning the selective advantages provided by individual and collective specialized metabolites to the reproductive success of diverse host plants. Here we review the biological functions conferred by various classes of plant specialized metabolites in the context of the interaction of plants with their surrounding environment. To achieve optimal multifunctionality of diverse specialized metabolic processes, plants use various adaptive mechanisms at subcellular, cellular, tissue, organ and interspecies levels. Understanding these mechanisms and the evolutionary trajectories underlying their occurrence in nature will ultimately enable efficient bioengineering of desirable metabolic traits in chassis organisms.
Decades of research have identified the biochemical basis of many plant specialized metabolic pathways. This Review highlights the biological context of these pathways and how recent advances have extended the new frontiers of phytochemistry.
Journal Article
Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture
by
Yoshikuni, Yasuo
,
Wang, Bing
,
Ke, Jing
in
Agricultural engineering
,
Agricultural production
,
Agriculture
2021
To support an ever-increasing population, modern agriculture faces numerous challenges that pose major threats to global food and energy security. Plant-associated microbes, with their many plant growth-promoting (PGP) traits, have enormous potential in helping to solve these challenges. However, the results of their use in agriculture have been variable, probably because of poor colonization. Phytomicrobiome engineering is an emerging field of synthetic biology that may offer ways to alleviate this limitation. This review highlights recent advances in both bottom-up and top-down approaches to engineering non-model bacteria and microbiomes to promote beneficial plant–microbe interactions, as well as advances in strategies to evaluate these interactions. Biosafety, biosecurity, and biocontainment strategies to address the environmental concerns associated with field use of synthetic microbes are also discussed.
Mutualistic microbes associated with plants have enormous potential for economical and sustainable agriculture.There are two approaches to plant microbiome engineering: the bottom-up approach that involves isolating, engineering, and reintroducing specific microbes, and the top-down approach that involves synthetic ecology, using horizontal gene transfer to a broad range of hosts in situ and then phenotyping the microbiome.Recent advances in genome engineering tools, meta-omic tools, computational tools, and genome-wide functional genomics can improve our ability to engineer microbes for biocontrol, biofertilization, and biostimulation, as well as enhanced crop productivity and yield.Various devices can facilitate the evaluation of genetically modified microbes before field studies.Robust biosafety, biosecurity, and biocontainment strategies need to be developed for use of genetically modified microbes in the environment.
Journal Article
SG2-Type R2R3-MYB Transcription Factor MYB15 Controls Defense-Induced Lignification and Basal Immunity in Arabidopsis
by
Clay, Nicole K.
,
Memon, Altamash
,
Weng, Jing-Ke
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2017
Lignification of cell wall appositions is a conserved basal defense mechanism in the plant innate immune response. However, the genetic pathway controlling defense-induced lignification remains unknown. Here, we demonstrate the Arabidopsis thaliana SG2-type R2R3-MYB transcription factor MYB15 as a regulator of defense-induced lignification and basal immunity. Loss of MYB15 reduces the content but not the composition of defense-induced lignin, whereas constitutive expression of MYB15 increases lignin content independently of immune activation. Comparative transcriptional and metabolomics analyses implicate MYB15 as necessary for the defense-induced synthesis of guaiacyl lignin and the basal synthesis of the coumarin metabolite scopoletin. MYB15 directly binds to the secondary wall MYB-responsive element consensus sequence, which encompasses the AC elements, to drive lignification. The myb15 and lignin biosynthetic mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with defense-induced lignin having a major role in basal immunity. A scopoletin biosynthetic mutant also shows increased susceptibility independently of immune activation, consistent with a role in preformed defense. Our results support a role for phenylalanine-derived small molecules in preformed and inducible Arabidopsis defense, a role previously dominated by tryptophan-derived small molecules. Understanding the regulatory network linking lignin biosynthesis to plant growth and defense will help lignin engineering efforts to improve the production of biofuels and aromatic industrial products as well as increase disease resistance in energy and agricultural crops.
Journal Article
The long non‐coding RNA DANCR regulates the inflammatory phenotype of breast cancer cells and promotes breast cancer progression via EZH2‐dependent suppression of SOCS3 transcription
by
Zhang, Ke‐Jing
,
Tan, Xiao‐Lang
,
Guo, Lei
in
Animals
,
Breast cancer
,
Breast Neoplasms - genetics
2020
Long non‐coding RNA (lncRNA) is involved in the regulation of tumorigenesis and metastasis. In this study, we focused on the clinical relevance, biological effects, and molecular mechanisms of the lncRNA differentiation antagonizing non‐protein coding RNA (DANCR) in breast cancer. We compared the expression of DANCR between breast cancer and normal tissues, and between breast cancer cell lines and normal breast epithelial cells using quantitative real‐time PCR (qRT‐PCR) analysis. By knocking down and overexpressing DANCR, we assessed its significance in regulating viability (MTT assay), migration/invasion (Transwell assay), epithelial‐mesenchymal transition (western blot), stemness (mammosphere formation assay and western blot), and production of inflammatory cytokines (qRT‐PCR and ELISA) of breast cancer cells in vitro, as well as xenograft growth in vivo. Furthermore, using ChIP and RNA immunoprecipitation, we examined the reciprocal regulation between DANCR and suppressor of cytokine signaling 3 (SOCS3) in breast cancer. DANCR was significantly up‐regulated in tissue samples from patients with breast cancer, as well as in breast cancer cell lines, as compared with normal tissues and breast epithelial cells, respectively. The highest DANCR expression levels were associated with advanced tumor grades or lymph node metastasis. DANCR was necessary and sufficient to control multiple malignant phenotypes of breast cancer cells in vitro and xenograft growth in vivo. Mechanistically, DANCR promoted the binding of enhancer of zeste homolog 2 (EZH2) to the promoter of SOCS3, thereby epigenetically inhibiting SOCS3 expression. Functionally, SOCS3 up‐regulation or EZH2 inhibition could rescue multiple malignant phenotypes induced by DANCR. Our data indicate that DANCR is a pleiotropic oncogenic lncRNA in breast cancer. Boosting SOCS3 expression may reverse the oncogenic activities of DANCR and thus provide a therapeutic strategy for breast cancer treatment. Differentiation antagonizing non‐protein coding RNA (DANCR) binds to enhancer of zeste homolog 2 (EZH2), recruiting EZH2‐ and EZH2‐generated H3K27me3 to the suppressor of cytokine signaling 3 (SOCS3) promoter, thus inhibiting the transcription of SOCS3. DANCR induced down‐regulation of SOCS3‐induced inflammatory response and multiple malignant phenotypes in breast cancer cell.
Journal Article
Potential of artificial intelligence in reducing energy and carbon emissions of commercial buildings at scale
2024
Artificial intelligence has emerged as a technology to enhance productivity and improve life quality. However, its role in building energy efficiency and carbon emission reduction has not been systematically studied. This study evaluated artificial intelligence’s potential in the building sector, focusing on medium office buildings in the United States. A methodology was developed to assess and quantify potential emissions reductions. Key areas identified were equipment, occupancy influence, control and operation, and design and construction. Six scenarios were used to estimate energy and emissions savings across representative climate zones. Here we show that artificial intelligence could reduce cost premiums, enhancing high energy efficiency and net zero building penetration. Adopting artificial intelligence could reduce energy consumption and carbon emissions by approximately 8% to 19% in 2050. Combining with energy policy and low-carbon power generation could approximately reduce energy consumption by 40% and carbon emissions by 90% compared to business-as-usual scenarios in 2050.
AI reduces building energy and emissions in design/construction, equipment, occupancy, and control/operation. By accelerating high-efficiency and net-zero buildings, AI could cut energy and emissions by 40-90% by 2050 combined with adequate policies.
Journal Article
Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions
by
Boyer, Michael
,
Zhou, Caicun
,
Majem, Margarita
in
Antineoplastic Agents, Immunological - administration & dosage
,
Antineoplastic Agents, Immunological - adverse effects
,
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
2023
Amivantamab has been approved for the treatment of patients with advanced non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (
) exon 20 insertions who have had disease progression during or after platinum-based chemotherapy. Phase 1 data showed the safety and antitumor activity of amivantamab plus carboplatin-pemetrexed (chemotherapy). Additional data on this combination therapy are needed.
In this phase 3, international, randomized trial, we assigned in a 1:1 ratio patients with advanced NSCLC with
exon 20 insertions who had not received previous systemic therapy to receive intravenous amivantamab plus chemotherapy (amivantamab-chemotherapy) or chemotherapy alone. The primary outcome was progression-free survival according to blinded independent central review. Patients in the chemotherapy group who had disease progression were allowed to cross over to receive amivantamab monotherapy.
A total of 308 patients underwent randomization (153 to receive amivantamab-chemotherapy and 155 to receive chemotherapy alone). Progression-free survival was significantly longer in the amivantamab-chemotherapy group than in the chemotherapy group (median, 11.4 months and 6.7 months, respectively; hazard ratio for disease progression or death, 0.40; 95% confidence interval [CI], 0.30 to 0.53; P<0.001). At 18 months, progression-free survival was reported in 31% of the patients in the amivantamab-chemotherapy group and in 3% in the chemotherapy group; a complete or partial response at data cutoff was reported in 73% and 47%, respectively (rate ratio, 1.50; 95% CI, 1.32 to 1.68; P<0.001). In the interim overall survival analysis (33% maturity), the hazard ratio for death for amivantamab-chemotherapy as compared with chemotherapy was 0.67 (95% CI, 0.42 to 1.09; P = 0.11). The predominant adverse events associated with amivantamab-chemotherapy were reversible hematologic and EGFR-related toxic effects; 7% of patients discontinued amivantamab owing to adverse reactions.
The use of amivantamab-chemotherapy resulted in superior efficacy as compared with chemotherapy alone as first-line treatment of patients with advanced NSCLC with
exon 20 insertions. (Funded by Janssen Research and Development; PAPILLON ClinicalTrials.gov number, NCT04538664.).
Journal Article
Gene-guided discovery and engineering of branched cyclic peptides in plants
2018
The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated from the Chinese wolfberry Lycium barbarum, lyciumins are protease-inhibiting peptides featuring an N-terminal pyroglutamate and a macrocyclic bond between a tryptophan-indole nitrogen and a glycine α-carbon. We report the identification of a lyciumin precursor gene from L. barbarum, which encodes a BURP domain and repetitive lyciumin precursor peptide motifs. Genome mining enabled by this initial finding revealed rich lyciumin genotypes and chemotypes widespread in flowering plants. We establish a biosynthetic framework of lyciumins and demonstrate the feasibility of producing diverse natural and unnatural lyciumins in transgenic tobacco. With rapidly expanding plant genome resources, our approach will complement bioactivity-guided approaches to unlock and engineer hidden plant peptide chemistry for pharmaceutical and agrochemical applications.
Journal Article
The Rise of Chemodiversity in Plants
by
Noel, Joseph P.
,
Philippe, Ryan N.
,
Weng, Jing-Ke
in
Biochemical pathways
,
Biochemistry
,
Biodiversity
2012
Plants possess multifunctional and rapidly evolving specialized metabolic enzymes. Many metabolites do not appear to be immediately required for survival; nonetheless, many may contribute to maintaining population fitness in fluctuating and geographically dispersed environments. Others may serve no contemporary function but are produced inevitably as minor products by single enzymes with varying levels of catalytic promiscuity. The dominance of the terrestrial realm by plants likely mirrored expansion of specialized metabolism originating from primary metabolic pathways. Compared with their evolutionarily constrained counterparts in primary metabolism, specialized metabolic enzymes may be more tolerant to mutations normally considered destabilizing to protein structure and function. If this is true, permissiveness may partially explain the pronounced chemodiversity of terrestrial plants.
Journal Article
The molecular structure of plant sporopollenin
2019
Sporopollenin is a ubiquitous and extremely chemically inert biopolymer that constitutes the outer wall of all land-plant spores and pollen grains
1
. Sporopollenin protects the vulnerable plant gametes against a wide range of environmental assaults, and is considered a prerequisite for the migration of early plants onto land
2
. Despite its importance, the chemical structure of plant sporopollenin has remained elusive
1
. Using a newly developed thioacidolysis degradative method together with state-of-the-art solid-state NMR techniques, we determined the detailed molecular structure of pine sporopollenin. We show that pine sporopollenin is primarily composed of aliphatic-polyketide-derived polyvinyl alcohol units and 7-
O
-
p
-coumaroylated C16 aliphatic units, crosslinked through a distinctive dioxane moiety featuring an acetal. Naringenin was also identified as a minor component of pine sporopollenin. This discovery answers the long-standing question about the chemical make-up of plant sporopollenin, laying the foundation for future investigations of sporopollenin biosynthesis and for the design of new biomimetic polymers with desirable inert properties.
A distinct feature of pollen gains is their resistant outer wall, called the exine, which is mainly composed of sporopollenin, the toughest biopolymer known to date despite an unknown detailed structure. Now, a structural model of pine sporopollenin is revealed by the application of new degradation chemistry and solid-state NMR spectroscopy.
Journal Article