Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
107
result(s) for
"Keats, S. G."
Sort by:
Patterns of Nucleotide Misincorporations during Enzymatic Amplification and Direct Large-scale Sequencing of Ancient DNA
by
Jaenicke-Després, V.
,
Keats, S. G.
,
Wuenschell, G. E.
in
Animals
,
Base Sequence
,
Biological Sciences
2006
Whereas evolutionary inferences derived from present-day DNA sequences are by necessity indirect, ancient DNA sequences provide a direct view of past genetic variants. However, base lesions that accumulate in DNA over time may cause nucleotide misincorporations when ancient DNA sequences are replicated. By repeated amplifications of mitochondrial DNA sequences from a large number of ancient wolf remains, we show that C/G-to-T/A transitions are the predominant type of such misincorporations. Using a massively parallel sequencing method that allows large numbers of single DNA strands to be sequenced, we show that modifications of C, as well as to a lesser extent of G, residues cause such misincorporations. Experiments where oligonucleotides containing modified bases are used as templates in amplification reactions suggest that both of these types of misincorporations can be caused by deamination of the template bases. New DNA sequencing methods in conjunction with knowledge of misincorporation processes have now, in principle, opened the way for the determination of complete genomes from organisms that became extinct during and after the last glaciation.
Journal Article
Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma
by
Van Wier, S
,
Bergsagel, P L
,
Tamizhmani, K
in
631/208/2489/68
,
692/420/755
,
692/699/67/1990/804
2014
MYC locus rearrangements—often complex combinations of translocations, insertions, deletions and inversions—in multiple myeloma (MM) were thought to be a late progression event, which often did not involve immunoglobulin genes. Yet, germinal center activation of MYC expression has been reported to cause progression to MM in an MGUS (monoclonal gammopathy of undetermined significance)-prone mouse strain. Although previously detected in 16% of MM, we find MYC rearrangements in nearly 50% of MM, including smoldering MM, and they are heterogeneous in some cases. Rearrangements reposition MYC near a limited number of genes associated with conventional enhancers, but mostly with super-enhancers (e.g., IGH, IGL, IGK, NSMCE2, TXNDC5, FAM46C, FOXO3, IGJ, PRDM1). MYC rearrangements are associated with a significant increase of MYC expression that is monoallelic, but MM tumors lacking a rearrangement have biallelic MYC expression at significantly higher levels than in MGUS. We also have shown that germinal center activation of MYC does not cause MM in a mouse strain that rarely develops spontaneous MGUS. It appears that increased MYC expression at the MGUS/MM transition usually is biallelic, but sometimes can be monoallelic if there is an MYC rearrangement. Our data suggest that MYC rearrangements, regardless of when they occur during MM pathogenesis, provide one event that contributes to tumor autonomy.
Journal Article
Mobilising evidence, data, and resources to achieve global maternal and child undernutrition targets and the Sustainable Development Goals: an agenda for action
2021
As the world counts down to the 2025 World Health Assembly nutrition targets and the 2030 Sustainable Development Goals, millions of women, children, and adolescents worldwide remain undernourished (underweight, stunted, and deficient in micronutrients), despite evidence on effective interventions and increasing political commitment to, and financial investment in, nutrition. The COVID-19 pandemic has crippled health systems, exacerbated household food insecurity, and reversed economic growth, which together could set back improvements in undernutrition across low-income and middle-income countries. This paper highlights how the evidence base for nutrition, health, food systems, social protection, and water, sanitation, and hygiene interventions has evolved since the 2013 Lancet Series on maternal and child nutrition and identifies the priority actions needed to regain and accelerate progress within the next decade. Policies and interventions targeting the first 1000 days of life, including some newly identified since 2013, require renewed commitment, implementation research, and increased funding from both domestic and global actors. A new body of evidence from national and state-level success stories in stunting reduction reinforces the crucial importance of multisectoral actions to address the underlying determinants of undernutrition and identifies key features of enabling political environments. To support these actions, well-resourced nutrition data and information systems are essential. The paper concludes with a call to action for the 2021 Nutrition for Growth Summit to unite global and national nutrition stakeholders around common priorities to tackle a large, unfinished undernutrition agenda—now amplified by the COVID-19 crisis.
Journal Article
Multiple myeloma immunoglobulin lambda translocations portend poor prognosis
2019
Multiple myeloma is a malignancy of antibody-secreting plasma cells. Most patients benefit from current therapies, however, 20% of patients relapse or die within two years and are deemed high risk. Here we analyze structural variants from 795 newly-diagnosed patients as part of the CoMMpass study. We report translocations involving the immunoglobulin lambda (IgL) locus are present in 10% of patients, and indicative of poor prognosis. This is particularly true for IgL-MYC translocations, which coincide with focal amplifications of enhancers at both loci. Importantly, 78% of IgL-MYC translocations co-occur with hyperdiploid disease, a marker of standard risk, suggesting that IgL-MYC-translocated myeloma is being misclassified. Patients with IgL-translocations fail to benefit from IMiDs, which target IKZF1, a transcription factor that binds the IgL enhancer at some of the highest levels in the myeloma epigenome. These data implicate IgL translocation as a driver of poor prognosis which may be due to IMiD resistance.
Multiple myeloma is frequently characterised by translocation of genes next to the immunoglobulin heavy chain locus. In this study, the authors sequence a large cohort of high risk myeloma samples and find translocations of cMyc to the immunoglobulin heavy chain locus and this is associated with poor prognosis.
Journal Article
The Protein Kinase A-Dependent Phosphoproteome of the Human Pathogen Aspergillus fumigatus Reveals Diverse Virulence-Associated Kinase Targets
by
Bobay, Benjamin G.
,
Moseley, M. Arthur
,
Asfaw, Yohannes G.
in
Animal models
,
Animals
,
Aspergillosis - microbiology
2020
PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Protein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis. IMPORTANCE PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Despite its ubiquitous necessity, specific PKA effectors underlying microbial disease remain unknown. To address this fundamental knowledge gap, we examined the whole-proteomic and phosphoproteomic impacts of PKA on the deadly fungal pathogen Aspergillus fumigatus to uncover novel PKA targets controlling growth and virulence. We also defined the functional consequences of specific posttranslational modifications of these target proteins to characterize the molecular mechanisms of pathogenic effector regulation by PKA. This study constitutes the most comprehensive analysis of the PKA-dependent phosphoproteome of any human pathogen and proposes new and complex roles played by PKA signaling networks in governing infectious disease.
Journal Article
CD84 is a regulator of the immunosuppressive microenvironment in Multiple Myeloma
by
Mansour, Anthony
,
Keats, Jonathan J.
,
Cohen, Yosef
in
Animals
,
B7-H1 Antigen
,
Cell activation
2021
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) within the BM. The BM microenvironment supports survival of the malignant cells and is composed of cellular fractions that foster myeloma development and progression by suppression of the immune response. Despite major progress in understanding the biology and pathophysiology of MM, this disease is still incurable and requires aggressive treatment with significant side effects. CD84 is a self-binding immunoreceptor belonging to the signaling lymphocyte activation molecule (SLAM) family. Previously, we showed that CD84 bridges between chronic lymphocytic leukemia cells and their microenvironment, and it regulates T cell function. In the current study, we investigated the role of CD84 in MM. Our results show that MM cells express low levels of CD84. However, these cells secrete the cytokine macrophage migration inhibitory factor (MIF), which induces CD84 expression on cells in their microenvironment. Its activation leads to an elevation of expression of genes regulating differentiation to monocytic/granulocytic-myeloid-derived suppressor cells (M-MDSCs and G-MDSCs, respectively) and upregulation of PD-L1 expression on MDSCs, which together suppress T cell function. Downregulation of CD84 or its blocking reduce MDSC accumulation, resulting in elevated T cell activity and reduced tumor load. Our data suggest that CD84 might serve as a novel therapeutic target in MM.
Journal Article
Initial genome sequencing and analysis of multiple myeloma
by
Levy, Joan
,
Bergsagel, P. Leif
,
Trudel, Suzanne
in
631/1647/514
,
692/420/2489/68
,
692/699/67/1990/804
2011
Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.
BRAF and other links to multiple myeloma
Multiple myeloma, a malignancy of plasma cells, remains incurable and is poorly understood. Chapman
et al
. have used next-generation sequencing to compare 38 multiple myeloma genomes with those of normal cells from the same patients. The disease involves mutations of genes with roles in protein translation, histone methylation and blood coagulation. In terms of clinically relevant findings, unexpected activating mutations were found in the kinase BRAF, inhibitors of which have recently shown dramatic clinical activity. This suggests that BRAF inhibitors should be evaluated in patients with BRAF-mutated multiple myeloma.
Multiple myeloma, a malignancy of plasma cells, remains incurable and is poorly understood. Using next-generation sequencing of several multiple myeloma genomes reveals that this disease involves mutations of genes involved in protein translation, histone methylation and blood coagulation. The study suggests that BRAF inhibitors should be evaluated in multiple myeloma clinical trials.
Journal Article
Single-nucleus multi-omics of Parkinson’s disease reveals a glutamatergic neuronal subtype susceptible to gene dysregulation via alteration of transcriptional networks
by
Gingerich, Daniel C.
,
Chiba-Falek, Ornit
,
Man, Zhaohui
in
Aged
,
alpha-Synuclein - genetics
,
alpha-Synuclein - metabolism
2024
The genetic architecture of Parkinson’s disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using
parallel
single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of
SNCA
. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.
Journal Article
Comparative mapping of single‐cell transcriptomic landscapes in neurodegenerative diseases
by
Gingerich, Daniel C.
,
Man, Zhaohui
,
Serrano, Geidy E.
in
Aged
,
Alzheimer Disease - genetics
,
Alzheimer's disease
2025
INTRODUCTION Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and Parkinson's disease (PD) represent a spectrum of neurodegenerative diseases (NDDs). Here, we performed the first direct comparison of their transcriptomic landscapes. METHODS We profiled whole transcriptomes of NDD cortical tissue by single‐nucleus RNA sequencing, using computational analyses to identify common and distinct differentially expressed genes (DEGs), pathways, vulnerable and disease‐driver cell subtypes, and altered cell‐to‐cell interactions. RESULTS The same inhibitory neuron subtype was depleted in both AD and DLB. Potentially disease‐driving neuronal cell subtypes were identified in both PD and DLB. Cell–cell communication was predicted to be increased in AD but decreased in DLB and PD. DEGs were most commonly shared across NDDs within inhibitory neuron subtypes. Overall, AD and PD showed greatest transcriptomic divergence, while DLB exhibited an intermediate signature. DISCUSSION These results may help explain the clinicopathological spectrum of these NDDs and provide unique insights into shared and distinct molecular mechanisms underlying pathogenesis. Highlights The same vulnerable inhibitory neuron subtype population was depleted in both Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Potentially disease‐driving neuronal cell subtypes were discovered in both Parkinson's disease (PD) and DLB. Cell–cell communication was predicted to be increased in AD but decreased in DLB and PD. Differentially expressed genes were most commonly shared across neurodegenerative diseases in inhibitory neuron types. AD and PD had the greatest transcriptomic divergence, with DLB showing an intermediate signature.
Journal Article