Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
86 result(s) for "Keller, Joshua L"
Sort by:
Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood flow restriction resistance training
PurposeLow-intensity venous blood flow restriction (vBFR) resistance training has been shown to promote increases in muscle strength and size. Eccentric-only muscle actions are typically a more potent stimulus to increase muscle strength and size than concentric-only muscle actions performed at the same relative intensities. Therefore, the purpose of this investigation was to examine the time-course of changes in muscle strength, hypertrophy, and neuromuscular adaptations following 4 weeks of unilateral forearm flexion low-intensity eccentric vBFR (Ecc-vBFR) vs. low-intensity concentric vBFR (Con-vBFR) resistance training performed at the same relative intensity.MethodsThirty-six women were randomly assigned to either Ecc-vBFR (n = 12), Con-vBFR (n = 12) or control (no intervention, n = 12) group. Ecc-vBFR trained at 30% of eccentric peak torque and Con-vBFR trained at 30% of concentric peak torque. All training and testing procedures were performed at an isokinetic velocity of 120° s−¹.ResultsMuscle strength increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (13.9 and 35.0%) and Con-vBFR (13.4 and 31.2%), but there were no changes in muscle strength for the control group. Muscle thickness increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (11.4 and 12.8%) and Con-vBFR (9.1 and 9.9%), but there were no changes for the control group. In addition, there were no changes in any of the neuromuscular responses.ConclusionsThe Ecc-vBFR and Con-vBFR low-intensity training induced comparable increases in muscle strength and size. The increases in muscle strength, however, were not associated with neuromuscular adaptations.
Low-load blood flow restriction elicits greater concentric strength than non-blood flow restriction resistance training but similar isometric strength and muscle size
PurposeLow-load venous blood flow restriction resistance training (RT + BFR) has been demonstrated to increase muscle strength to a greater degree than low-load non-BFR resistance training (RT) during isotonic training, but no previous investigations have examined RT + BFR versus RT during isokinetic training. The purpose of the present study was to examine the effects of 4 weeks of isokinetic low-load RT + BFR versus low-load RT on indices of muscle strength, muscle size, and neural adaptations.MethodsThirty women (mean ± SD; 22 ± 2 years) participated in this investigation and were randomly assigned to 4 weeks of either RT + BFR (n = 10), RT (n = 10), or control (n = 10) group. Resistance training consisted of 75 reciprocal forearm flexion–extension isokinetic muscle actions of the forearm flexors performed at a velocity of 120°s−1.ResultsConcentric peak torque increased to a greater extent for RT + BFR after 4 weeks (36.9%) compared to RT (25.8%), but there were similar increases in isometric torque (23.3–42.1%). For both RT + BFR and RT, there were similar increases in muscle cross-sectional area and muscle thickness of the biceps brachii after 2 weeks (11.3–14.3% and 12.4–12.9%, respectively) and 4 weeks (18.7–21.9% and 19.0–20.0%, respectively). There were similar increases in mechanomyographic amplitude, mechanomyographic mean power frequency, and electromyographic mean power frequency, but no changes in electromyographic amplitude for all conditions (including control).ConclusionsThese findings indicated that low-load RT + BFR elicited greater increases in concentric strength than low-load RT, but elicited comparable increases in isometric strength and muscle size. There were also no differences in any of the EMG and MMG responses among conditions.
Patterns of responses and time-course of changes in muscle size and strength during low-load blood flow restriction resistance training in women
PurposeThe purpose of this investigation was to examine the individual and composite patterns of responses and time-course of changes in muscle size, strength, and edema throughout a 4 week low-load blood flow restriction (LLBFR) resistance training intervention.MethodsTwenty recreationally active women (mean ± SD; 23 ± 3 years) participated in this investigation and were randomly assigned to 4 weeks (3/week) of LLBFR (n = 10) or control (n = 10) group. Resistance training consisted of 75 reciprocal isokinetic forearm flexion–extension muscle actions performed at 30% of peak torque. Strength and ultrasound-based assessments were determined at each training session.ResultsThere were quadratic increases for composite muscle thickness (R2 = 0.998), concentric peak torque (R2 = 0.962), and maximal voluntary isometric contraction (MVIC) torque (R2 = 0.980) data for the LLBFR group. For muscle thickness, seven of ten subjects exceeded the minimal difference (MD) of 0.16 cm during the very early phase (laboratory visits 1–7) of the intervention compared to three of ten subjects that exceeded MD for either concentric peak torque (3.7 Nm) or MVIC (2.2 Nm) during this same time period. There was a linear increase for composite echo intensity (r2 = 0.563) as a result of LLBFR resistance training, but eight of ten subjects never exceeded the MD of 14.2 Au.ConclusionsThese findings suggested that the increases in muscle thickness for the LLBFR group were not associated with edema and changes in echo intensity should be examined on a subject-by-subject basis. Furthermore, LLBFR forearm flexion–extension resistance training elicited real increases in muscle size during the very early phase of training that occurred prior to real increases in muscle strength.
An examination of the relationship among plasma brain derived neurotropic factor, peripheral vascular function, and body composition with cognition in midlife African Americans/Black individuals
African American/Black individuals have been excluded from several lines of prominent neuroscience research, despite exhibiting disproportionately higher risk factors associated with the onset and magnitude of neurodegeneration. Therefore, the objective of the current investigation was to examine potential relationships among brain derived neurotropic factor (BDNF), peripheral vascular function, and body composition with cognition in a sample of midlife, African American/Black individuals. Midlife adults (Men: n=3, 60 ± 4 yr; Women: n=9, 58 ± 5yr) were invited to complete two baseline visits separated by four weeks. Peripheral vascular function was determined by venous occlusion plethysmography, a dual-energy X-ray absorptiometry can was used to determine body composition, and plasma was collected to quantify BDNF levels. The CNS Vital Signs computer-based test was used to provide scores on numerous cognitive domains. The principal results included that complex attention (r = 0.629) and processing speed (r = 0.734) were significantly (p 0.05) relationship between any vascular measure and any cognitive domain or BDNF value. Secondary findings included the relationship between lean mass and peak hyperemia (r = 0.758) as well as total hyperemia (r = 0.855). The major conclusion derived from these results was that there is rationale for future clinical trials to use interventions targeting increasing BDNF to potentially improve cognition. Additionally, these results strongly suggest that clinicians aiming to improve cognitive health via improvements in the known risk factor of vascular function should consider interventions capable of promoting the size and function of skeletal muscle, especially in the African American/Black population.
Neurovascular Dysfunction in Diverse Communities With Health Disparities—Contributions to Dementia and Alzheimer’s Disease
Alzheimer’s disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Towards this goal, the primary objective of this review was to investigate and better understand health disparities in AL and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer’s disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in AL, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in AL are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in AL, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.
Near-Infrared Spectroscopy Does Not Track Forearm Blood Flow during Venous Occlusion Plethysmography
Background: Venous occlusion plethysmography (VOP) non-invasively measures forearm blood flow (FBF), whereas near-infrared spectroscopy (NIRS) assesses skeletal muscle oxygenation. Using these techniques has revealed sex differences in microvascular responses. However, it is not clear if NIRS and VOP results are interchangeable under various conditions like reactive hyperemia (RH). Our purpose was to evaluate sex-specific associations between FBF and NIRS-derived parameters: oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and hemoglobin difference (O2Hb, HHb, tHb, and HbDiff). Methods: In total, 29 adults (15 men) participated, and a strain-gauge was placed on the forearm for VOP and a NIRS device was distally attached. Slopes for FBF and NIRS parameters were quantified during venous occlusion intervals at rest and during RH. Pearson’s correlations were assessed between VOP and NIRS slopes. Intraclass correlation coefficients (ICC2,1) examined the sex-specific consistency of the slopes at rest. p ≤ 0.05 was considered significant. Results: During RH, FBF was not correlated with O2Hb (r = −0.126), HHb (r = 0.228), tHb (r = 0.061), or HbDiff (r = 0.046). Seemingly, there were no sex differences. Resting FBF and NIRS-derived variables, except for HbDiff, displayed suitable consistency as suggested by the reliability results (ICC2,1 = 0.115–0.577). Conclusions: The NIRS values collected did not match the strain-gauge slopes. Individuals should practice caution when generating blood flow inferences from NIRS-based data during VOP.
Men exhibit faster skeletal muscle tissue desaturation than women before and after a fatiguing handgrip
PurposeThe purpose was to test the hypothesis that sex and fatigue effect of the early phase of skeletal muscle tissue oxygenation (StO2, %) desaturation rate as well as that strength matched adults may exhibit similar responses.MethodsTwenty-four adults visited the laboratory twice to quantify this early phase of desaturation during vascular occlusion tests (VOT) while in a rested state. The second visit included a sustained handgrip task at 25% of maximal muscular strength until task failure. At failure, a post-task VOT was initiated. Muscle desaturation was defined as StO2 and collected by a near-infrared spectroscopy device. The muscle size and adipose thickness were determined via ultrasonography. Linear regression was used to quantify the rates of desaturation during the VOTs as well as during the fatiguing handgrip.ResultsThere were sex differences in the rate of desaturation pre- and post-handgrip, such that independent of fatigue, the men (p < 0.001) desaturated more rapidly than the women (pre: b = − 0.208 vs. − 0.123%∙s−1; post: − 0.079 vs. − 0.070%∙s−1). During the fatiguing handgrip, the transformed StO2 values indicated that the males desaturated more rapidly than the females (b = − 0.070 vs. − 0.015). The matched pairs exhibited the same responses as the total sample.ConclusionOverall, muscle size and strength as well as adipose tissue were likely not the primary cause of the differences in rates of muscle desaturation. We hypothesized that differences in fiber type and mitochondria were the principle mechanisms provoking the differences in muscle oxygenation.
Examining Relationships between Cognitive Flexibility, Exercise Perceptions, and Cardiovascular Disease Risk Factors
Adults do not engage in enough physical activity. Investigating cognitive and physiological factors related to improving this behavior—and reducing health risks—remains a public health priority. Our objective was to assess whether cognitive flexibility influenced perceptions and choice of exercise programs and whether flexibility was associated with cardiovascular disease (CVD) risk factors. Independent sample groups of college-aged adults (18–24 yrs) participated in two studies. Data were collected on individuals’ degree of cognitive flexibility (both self-reported and objectively measured), perceptions and choice of exercise programs, and health status markers known to be associated with CVD (vascular function, muscular strength, and body composition). Vascular function was assessed with a near-infrared spectroscopy device, strength was defined as handgrip, and body composition was estimated via digital circumferences. Self-reported flexibility reliably predicted individuals’ choice of exercise program and perceptions of effort required for success on an exercise program. The relationships among CVD risk factors and objectively measured cognitive flexibility were not significant, demonstrating that identifying a healthy individual’s degree of performance-based cognitive flexibility does not predict health status. Furthermore, although greater self-reported trait flexibility (rigidity) is known to predict higher (lower) likelihood of physical activity, this finding should not be extrapolated to also assume that flexibility (rigidity), as measured by objective cognitive tests, is associated with reduced CVD risk in healthy adults. We posit a rationale for how understanding cognitive flexibility and rigidity can play an impactful role in improving adherence to exercise prescriptions targeted to reducing risks.
The effects of phosphocreatine disodium salts plus blueberry extract supplementation on muscular strength, power, and endurance
Background Numerous studies have demonstrated the efficacy of creatine supplementation for improvements in exercise performance. Few studies, however, have examined the effects of phosphocreatine supplementation on exercise performance. Furthermore, while polyphenols have antioxidant and anti-inflammatory properties, little is known regarding the influence of polyphenol supplementation on muscular strength, power, and endurance. Thus, the purpose of the present study was to compare the effects of 28 days of supplementation with phosphocreatine disodium salts plus blueberry extract (PCDSB), creatine monohydrate (CM), and placebo on measures of muscular strength, power, and endurance. Methods Thirty-three men were randomly assigned to consume either PCDSB, CM, or placebo for 28 days. Peak torque (PT), average power (AP), and percent decline for peak torque (PT%) and average power (AP%) were assessed from a fatigue test consisting of 50 maximal, unilateral, isokinetic leg extensions at 180°·s − 1 before and after the 28 days of supplementation. Individual responses were assessed to examine the proportion of subjects that exceeded a minimal important difference (MID). Results The results demonstrated significant ( p  < 0.05) improvements in PT for the PCDSB and CM groups from pre- (99.90 ± 22.47 N·m and 99.95 ± 22.50 N·m, respectively) to post-supplementation (119.22 ± 29.87 N·m and 111.97 ± 24.50 N·m, respectively), but no significant ( p  = 0.112) change for the placebo group. The PCDSB and CM groups also exhibited significant improvements in AP from pre- (140.18 ± 32.08 W and 143.42 ± 33.84 W, respectively) to post-supplementation (170.12 ± 42.68 W and 159.78 ± 31.20 W, respectively), but no significant ( p  = 0.279) change for the placebo group. A significantly ( p  < 0.05) greater proportion of subjects in the PCDSB group exceeded the MID for PT compared to the placebo group, but there were no significant ( p  > 0.05) differences in the proportion of subjects exceeding the MID between the CM and placebo groups or between the CM and PCDSB groups. Conclusions These findings indicated that for the group mean responses, 28 days of supplementation with both PCDSB and CM resulted in increases in PT and AP. The PCDSB, however, may have an advantage over CM when compared to the placebo group for the proportion of individuals that respond favorably to supplementation with meaningful increases in muscular strength.
Inter- and Intra-Individual Differences in EMG and MMG during Maximal, Bilateral, Dynamic Leg Extensions
The purpose of this study was to compare the composite, inter-individual, and intra-individual differences in the patterns of responses for electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) during fatiguing, maximal, bilateral, and isokinetic leg extension muscle actions. Thirteen recreationally active men (age = 21.7 ± 2.6 years; body mass = 79.8 ± 11.5 kg; height = 174.2 ± 12.7 cm) performed maximal, bilateral leg extensions at 180°·s−1 until the torque values dropped to 50% of peak torque for two consecutive repetitions. The EMG and MMG signals from the vastus lateralis (VL) muscles of both limbs were recorded. Four 2(Leg) × 19(time) repeated measures ANOVAs were conducted to examine mean differences for EMG AMP, EMG MPF, MMG AMP, and MMG MPF between limbs, and polynomial regression analyses were performed to identify the patterns of neuromuscular responses. The results indicated no significant differences between limbs for EMG AMP (p = 0.44), EMG MPF (p = 0.33), MMG AMP (p = 0.89), or MMG MPF (p = 0.52). Polynomial regression analyses demonstrated substantial inter-individual variability. Inferences made regarding the patterns of neuromuscular responses to fatiguing and bilateral muscle actions should be considered on a subject-by-subject basis.