Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
53 result(s) for "Keller, Reuben P"
Sort by:
Historical trends of aquatic invasive species introduction and establishment in Illinois, USA
Tracking the introduction and establishment of aquatic invasive species (AIS) is important for monitoring the biological and economic health of freshwater environments. The state of Illinois (USA) is a critical region for understanding the threats of AIS because it possesses the only continuous aquatic habitat connecting the Laurentian Great Lakes and Mississippi River Basins. In this study, we update a previous effort to catalogue and evaluate historical AIS records from Illinois. Our updated database shows that there are now at least 92 nonindigenous aquatic species established in Illinois and a further 51 have been recorded as introduced but not established. This is more species than reported in the earlier database, most likely due to improved access to data and a longer timeframe of analysis. Rates of introduction and establishment have continued to increase in Illinois over the past century, and we identify new groups of organisms that were not in the previous database. Current sampling efforts are not sufficient to detect the number of invaders present and additional non-native species may be present but not yet recorded. Illinois is likely to remain an important hub for the introduction and spread of invasive aquatic species with implications for freshwater ecosystems across the continent.
Economic and Environmental Impacts of Harmful Non-Indigenous Species in Southeast Asia
Harmful non-indigenous species (NIS) impose great economic and environmental impacts globally, but little is known about their impacts in Southeast Asia. Lack of knowledge of the magnitude of the problem hinders the allocation of appropriate resources for NIS prevention and management. We used benefit-cost analysis embedded in a Monte-Carlo simulation model and analysed economic and environmental impacts of NIS in the region to estimate the total burden of NIS in Southeast Asia. The total annual loss caused by NIS to agriculture, human health and the environment in Southeast Asia is estimated to be US$33.5 billion (5(th) and 95(th) percentile US$25.8-39.8 billion). Losses and costs to the agricultural sector are estimated to be nearly 90% of the total (US$23.4-33.9 billion), while the annual costs associated with human health and the environment are US$1.85 billion (US$1.4-2.5 billion) and US$2.1 billion (US$0.9-3.3 billion), respectively, although these estimates are based on conservative assumptions. We demonstrate that the economic and environmental impacts of NIS in low and middle-income regions can be considerable and that further measures, such as the adoption of regional risk assessment protocols to inform decisions on prevention and control of NIS in Southeast Asia, could be beneficial.
Risk assessment for invasive species produces net bioeconomic benefits
International commerce in live organisms presents a policy challenge for trade globalization; sales of live organisms create wealth, but some nonindigenous species cause harm. To reduce damage, some countries have implemented species screening to limit the introduction of damaging species. Adoption of new risk assessment (RA) technologies has been slowed, however, by concerns that RA accuracy remains insufficient to produce positive net economic benefits. This concern arises because only a small proportion of all introduced species escape, spread, and cause harm (i.e., become invasive), so a RA will exclude many noninvasive species (which provide a net economic benefit) for every invasive species correctly identified. Here, we develop a simple cost:benefit bioeconomic framework to quantify the net benefits from applying species prescreening. Because invasive species are rarely eradicated, and their damages must therefore be borne for long periods, we have projected the value of RA over a suitable range of policy time horizons (10-500 years). We apply the model to the Australian plant quarantine program and show that this RA program produces positive net economic benefits over the range of reasonable assumptions. Because we use low estimates of the financial damage caused by invasive species and high estimates of the value of species in the ornamental trade, our results underestimate the net benefit of the Australian plant quarantine program. In addition, because plants have relatively low rates of invasion, applying screening protocols to animals would likely demonstrate even greater benefits.
Species Invasions from Commerce in Live Aquatic Organisms: Problems and Possible Solutions
In the Laurentian Great Lakes region, commercial activities involving live fish bait, horticultural and water-garden plants, biological supplies, pets, and live food are the principal pathways for intentional introductions of live aquatic organisms. We sampled species for sale in these trades and found that the risks of new invasions and of spreading known invaders are high. Moreover, most animals were identified by common name only, and even though scientific names were more often applied to plants, consumers cannot be certain what species they are receiving because misidentification is common. Finally, 90 percent of plant orders arrived contaminated with unordered live organisms. The policy goal of US and Canadian national and state or provincial agencies is to reduce the risk of harmful introductions. Our results demonstrate that meeting this goal will require accurate identification of species by vendors, the removal of known and likely invasive species from trade, and reductions in the number of contaminant organisms.
Weed Risk Assessment for Aquatic Plants: Modification of a New Zealand System for the United States
We tested the accuracy of an invasive aquatic plant risk assessment system in the United States that we modified from a system originally developed by New Zealand's Biosecurity Program. The US system is comprised of 38 questions that address biological, historical, and environmental tolerance traits. Values associated with each response are summed to produce a total score for each species that indicates its risk of invasion. To calibrate and test this risk assessment, we identified 39 aquatic plant species that are major invaders in the continental US, 31 species that have naturalized but have no documented impacts (minor invaders), and 60 that have been introduced but have not established. These species represent 55 families and span all aquatic plant growth forms. We found sufficient information to assess all but three of these species. When the results are compared to the known invasiveness of the species, major invaders are distinguished from minor and non-invaders with 91% accuracy. Using this approach, the US aquatic weed risk assessment correctly identifies major invaders 85%, and non-invaders 98%, of the time. Model validation using an additional 10 non-invaders and 10 invaders resulted in 100% accuracy for the former, and 80% accuracy for the latter group. Accuracy was further improved to an average of 91% for all groups when the 17% of species with scores of 31-39 required further evaluation prior to risk classification. The high accuracy with which we can distinguish non-invaders from harmful invaders suggests that this tool provides a feasible, pro-active system for pre-import screening of aquatic plants in the US, and may have additional utility for prioritizing management efforts of established species.
Confronting the risks of large-scale invasive species control
Large-scale invasive species control initiatives are motivated by laudable desires for native species recovery and economic benefits, but they are not without risk. Management interventions and policies should include evidence-based risk–benefit assessment and mitigation planning.
Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network
Aim Some nations, and the International Maritime Organization, are moving towards requirements for managing ballast water to reduce the number of alien species transported and released. These and other measures will be most efficient when targeted at ships posing the greatest risks. Here, we analyse world-wide ship movements and port environmental conditions to explore how these risk components differ across arriving ships. Location Global, with a case study of the Laurentian Great Lakes. Methods We gathered salinity and temperature data for all global shipping ports, and data for all global ship movements during a 12 -month period. We applied these data to the Laurentian Great Lakes to determine which global ports may donate new species to the Great Lakes via ship traffic, and which are most environmentally similar to the Great Lakes. Results We show that ships regularly travel to the Great Lakes from all major coastal, and many inland, regions of the world. Most global ports, and thus the species in them, are separated from the Great Lakes by no more than two ship voyages. Combined with a measure of environmental similarity among global ports, we identify ship routes likely to transport species adapted for survival in the Great Lakes and global regions that may be the source of increasing future invasions. Main conclusions The Great Lakes account for a small fraction of global shipping yet are closely connected to all other ports, and the species in them, by the shipping network. Our methods and data allow risks from individual ships to be ranked so that management activities can be targeted at ships most likely to introduce new invaders. Because our data sets are global, they could be applied to ship arrivals at any global port.
Invasive species in Europe: ecology, status, and policy
Globalization of trade and travel has facilitated the spread of non-native species across the earth. A proportion of these species become established and cause serious environmental, economic, and human health impacts. These species are referred to as invasive , and are now recognized as one of the major drivers of biodiversity change across the globe. As a long-time centre for trade, Europe has seen the introduction and subsequent establishment of at least several thousand non-native species. These range in taxonomy from viruses and bacteria to fungi, plants, and animals. Although invasive species cause major negative impacts across all regions of Europe, they also offer scientists the opportunity to develop and test theory about how species enter and leave communities, how non-native and native species interact with each other, and how different types of species affect ecosystem functions. For these reasons, there has been recent growth in the field of invasion biology as scientists work to understand the process of invasion, the changes that invasive species cause to their recipient ecosystems, and the ways that the problems of invasive species can be reduced. This review covers the process and drivers of species invasions in Europe, the socio-economic factors that make some regions particularly strongly invaded, and the ecological factors that make some species particularly invasive. We describe the impacts of invasive species in Europe, the difficulties involved in reducing these impacts, and explain the policy options currently being considered. We outline the reasons that invasive species create unique policy challenges, and suggest some rules of thumb for designing and implementing management programs. If new management programs are not enacted in Europe, it is inevitable that more invasive species will arrive, and that the total economic, environmental, and human health impacts from these species will continue to grow.