Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Kenley, Jeanette K"
Sort by:
Prenatal environment is associated with the pace of cortical network development over the first three years of life
by
Alexopoulos, Dimitrios
,
Shimony, Joshua S.
,
Kenley, Jeanette K.
in
59/36
,
59/57
,
631/378/116/1925
2024
Environmental influences on brain structure and function during early development have been well-characterized, but whether early environments are associated with the pace of brain development is not clear. In pre-registered analyses, we use flexible non-linear models to test the theory that prenatal disadvantage is associated with differences in trajectories of intrinsic brain network development from birth to three years (
n
= 261). Prenatal disadvantage was assessed using a latent factor of socioeconomic disadvantage that included measures of mother’s income-to-needs ratio, educational attainment, area deprivation index, insurance status, and nutrition. We find that prenatal disadvantage is associated with developmental increases in cortical network segregation, with neonates and toddlers with greater exposure to prenatal disadvantage showing a steeper increase in cortical network segregation with age, consistent with accelerated network development. Associations between prenatal disadvantage and cortical network segregation occur at the local scale and conform to a sensorimotor-association hierarchy of cortical organization. Disadvantage-associated differences in cortical network segregation are associated with language abilities at two years, such that lower segregation is associated with improved language abilities. These results shed light on associations between the early environment and trajectories of cortical development.
Early environmental factors, like disadvantage, are associated with neurocognitive development. Here, the authors find that neonates and toddlers from economically disadvantaged backgrounds show accelerated brain development, with implications for language abilities in toddlerhood.
Journal Article
Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations
by
Fair, Damien A.
,
Kardan, Omid
,
Alexopoulos, Dimitrios
in
Adults
,
Babies
,
Connectome - methods
2022
The importance of motion correction when processing resting state functional magnetic resonance imaging (rs-fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude subject head motion, as well as factitious rhythmic motion induced by respiration. In adults, such respiration artifact can be effectively removed by applying a notch filter to the motion trace, resulting in higher amounts of data retained after frame censoring (e.g., “scrubbing”) and more reliable correlation values. Due to the unique physiological and behavioral characteristics of infants and toddlers, rs-fMRI processing pipelines, including methods to identify and remove colored noise due to subject motion, must be appropriately modified to accurately reflect true neuronal signal. These younger cohorts are characterized by higher respiration rates and lower-amplitude head movements than adults; thus, the presence and significance of comparable respiratory artifact and the subsequent necessity of applying similar techniques remain unknown. Herein, we identify and characterize the consistent presence of respiratory artifact in rs-fMRI data collected during natural sleep in infants and toddlers across two independent cohorts (aged 8–24 months) analyzed using different pipelines. We further demonstrate how removing this artifact using an age-specific notch filter allows for both improved data quality and data retention in measured results. Importantly, this work reveals the critical need to identify and address respiratory-driven head motion in fMRI data acquired in young populations through the use of age-specific motion filters as a mechanism to optimize the accuracy of measured results in this population.
Journal Article
Synthesizing pseudo-T2w images to recapture missing data in neonatal neuroimaging with applications in rs-fMRI
2022
T1- and T2-weighted (T1w and T2w) images are essential for tissue classification and anatomical localization in Magnetic Resonance Imaging (MRI) analyses. However, these anatomical data can be challenging to acquire in non-sedated neonatal cohorts, which are prone to high amplitude movement and display lower tissue contrast than adults. As a result, one of these modalities may be missing or of such poor quality that they cannot be used for accurate image processing, resulting in subject loss. While recent literature attempts to overcome these issues in adult populations using synthetic imaging approaches, evaluation of the efficacy of these methods in pediatric populations and the impact of these techniques in conventional MR analyses has not been performed. In this work, we present two novel methods to generate pseudo-T2w images: the first is based in deep learning and expands upon previous models to 3D imaging without the requirement of paired data, the second is based in nonlinear multi-atlas registration providing a computationally lightweight alternative. We demonstrate the anatomical accuracy of pseudo-T2w images and their efficacy in existing MR processing pipelines in two independent neonatal cohorts. Critically, we show that implementing these pseudo-T2w methods in resting-state functional MRI analyses produces virtually identical functional connectivity results when compared to those resulting from T2w images, confirming their utility in infant MRI studies for salvaging otherwise lost subject data.
Journal Article
Prenatal exposure to maternal social disadvantage and psychosocial stress and neonatal white matter connectivity at birth
by
Brady, Rebecca G.
,
Shimony, Joshua S.
,
Kenley, Jeanette K.
in
Anisotropy
,
Biological Sciences
,
Birth
2022
Early life adversity (social disadvantage and psychosocial stressors) is associated with altered microstructure in fronto-limbic pathways important for socioemotional development. Understanding when these associations begin to emerge may inform the timing and design of preventative interventions. In this longitudinal study, 399 mothers were oversampled for low income and completed social background measures during pregnancy. Measures were analyzed with structural equation analysis resulting in two latent factors: social disadvantage (education, insurance status, income-to-needs ratio [INR], neighborhood deprivation, and nutrition) and psychosocial stress (depression, stress, life events, and racial discrimination). At birth, 289 healthy term-born neonates underwent a diffusion MRI (dMRI) scan. Mean diffusivity (MD) and fractional anisotropy (FA) were measured for the dorsal and inferior cingulum bundle (CB), uncinate, and fornix using probabilistic tractography in FSL. Social disadvantage and psychosocial stress were fitted to dMRI parameters using regression models adjusted for infant postmenstrual age at scan and sex. Social disadvantage, but not psychosocial stress, was independently associated with lower MD in the bilateral inferior CB and left uncinate, right fornix, and lower MD and higher FA in the right dorsal CB. Results persisted after accounting for maternal medical morbidities and prenatal drug exposure. In moderation analysis, psychosocial stress was associated with lower MD in the left inferior CB among the lower-to-higher socioeconomic status (SES) (INR ≥ 200%) group, but not the extremely low SES (INR < 200%) group. Increasing access to social welfare programs that reduce the burden of social disadvantage and related psychosocial stressors may be an important target to protect fetal brain development in fronto-limbic pathways.
Journal Article
Altered neonatal white and gray matter microstructure is associated with neurodevelopmental impairments in very preterm infants with high-grade brain injury
2019
BackgroundThis study examines relationships between neonatal white and gray matter microstructure and neurodevelopment in very preterm (VPT) infants (≤30 weeks gestation) with high-grade brain injury (BI).MethodsTerm-equivalent diffusion tensor magnetic resonance imaging data were obtained in 32 VPT infants with high-grade BI spanning grade III/IV intraventricular hemorrhage, post-hemorrhagic hydrocephalus (PHH), and cystic periventricular leukomalacia (BI group); 69 VPT infants without high-grade injury (VPT group); and 55 term-born infants. The Bayley-III assessed neurodevelopmental outcomes at age 2 years.ResultsBI infants had lower fractional anisotropy (FA) in the posterior limb of the internal capsule (PLIC), cingulum, and corpus callosum, and higher mean diffusivity (MD) in the optic radiations and cingulum than VPT infants. PHH was associated with higher MD in the optic radiations and left PLIC, and higher FA in the right caudate. For BI infants, higher MD in the right optic radiation and lower FA in the right cingulum, PLIC, and corpus callosum were related to motor impairments.ConclusionsBI infants demonstrated altered white and gray matter microstructure in regions affected by injury in a manner dependent upon injury type. PHH infants demonstrated the greatest impairments. Aberrant white matter microstructure was related to motor impairment in BI infants.
Journal Article
Tract-Specific Relationships Between Cerebrospinal Fluid Biomarkers and Periventricular White Matter in Posthemorrhagic Hydrocephalus of Prematurity
by
Han, Rowland H
,
Smyser, Tara A
,
Limbrick, David D
in
Amyloid beta-protein
,
Amyloid beta-Protein Precursor - cerebrospinal fluid
,
Anisotropy
2021
Abstract
BACKGROUND
Posthemorrhagic hydrocephalus (PHH) is associated with neurological morbidity and complex neurosurgical care. Improved tools are needed to optimize treatments and to investigate the developmental sequelae of PHH.
OBJECTIVE
To examine the relationship between diffusion magnetic resonance imaging (dMRI) and cerebrospinal fluid (CSF) biomarkers of PHH.
METHODS
A total of 14 preterm (PT) infants with PHH and 46 controls were included. PT CSF was collected at temporizing surgery in PHH infants (PHH PT CSF) or lumbar puncture in controls. Term-equivalent age (TEA) CSF was acquired via implanted device or at permanent CSF diversion surgery in PHH (PHH-TEA-CSF) or lumbar puncture in controls. TEA dMRI scans were used to measure fractional anisotropy (FA) and mean diffusivity (MD) in the genu of corpus callosum (gCC), posterior limb of internal capsule (PLIC), and optic radiations (OPRA). Associations between dMRI measures and CSF amyloid precursor protein (APP), neural cell adhesion-1 (NCAM-1), and L1 cell adhesion molecule (L1CAM) were assessed using Pearson correlations.
RESULTS
APP, NCAM-1, and L1CAM were elevated over controls in PHH-PT-CSF and PHH-TEA-CSF. dMRI FA and MD differed between control and PHH infants across all tracts. PHH-PT-CSF APP levels correlated with gCC and OPRA FA and PLIC MD, while L1CAM correlated with gCC and OPRA FA. In PHH-TEA-CSF, only L1CAM correlated with OPRA MD.
CONCLUSION
Tract-specific associations were observed between dMRI and CSF biomarkers at the initiation of PHH treatment. dMRI and CSF biomarker analyses provide innovative complementary methods for examining PHH-related white matter injury and associated developmental sequelae.
Journal Article
The Generalizability of Cortical Area Parcellations Across Early Childhood
2025
The cerebral cortex consists of distinct areas that develop through intrinsic embryonic patterning and postnatal experiences. Accurate parcellation of these areas in neuroimaging studies improves statistical power and cross-study comparability. Given significant brain changes in volume, microstructure, and connectivity during early life, we hypothesized that cortical areas in 1- to 3-year-olds would differ markedly from neonates and increasingly resemble adult patterns as development progresses. Here, we parcellated the cerebral cortex into putative areas using local functional connectivity gradients in 92 toddlers at 2 years old. We demonstrate high reproducibility of these cortical regions across 1- to 3-year-olds in two independent datasets. The area boundaries in 1- to 3-year-olds were more similar to those in adults than those in neonates. While the age-specific group area parcellation better fit the underlying functional connectivity in individuals during the first 3 years, adult area parcellations might still have some utility in developmental studies, especially in children older than 6 years. Additionally, we provide connectivity-based community assignments of the parcels, showing fragmented anterior and posterior components based on the strongest connectivity, yet alignment with adult systems when weaker connectivity was included.
Journal Article
Prenatal environment is associated with the pace of cortical network development over the first three years of life
2023
Environmental influences on brain structure and function during early development have been well-characterized. In pre-registered analyses, we test the theory that socioeconomic status (SES) is associated with differences in trajectories of intrinsic brain network development from birth to three years (
= 261). Prenatal SES is associated with developmental increases in cortical network segregation, with neonates and toddlers from lower-SES backgrounds showing a steeper increase in cortical network segregation with age, consistent with accelerated network development. Associations between SES and cortical network segregation occur at the local scale and conform to a sensorimotor-association hierarchy of cortical organization. SES-associated differences in cortical network segregation are associated with language abilities at two years, such that lower segregation is associated with improved language abilities. These results yield key insight into the timing and directionality of associations between the early environment and trajectories of cortical development.
Journal Article
Early Life Neuroimaging: The Generalizability of Cortical Area Parcellations Across Development
2024
The cerebral cortex comprises discrete cortical areas that form during development. Accurate area parcellation in neuroimaging studies enhances statistical power and comparability across studies. The formation of cortical areas is influenced by intrinsic embryonic patterning as well as extrinsic inputs, particularly through postnatal exposure. Given the substantial changes in brain volume, microstructure, and functional connectivity during the first years of life, we hypothesized that cortical areas in 1-to-3-year-olds would exhibit major differences from those in neonates and progressively resemble adults as development progresses. Here, we parcellated the cerebral cortex into putative areas using local functional connectivity gradients in 92 toddlers at 2 years old. We demonstrated high reproducibility of these cortical regions across 1-to-3-year-olds in two independent datasets. The area boundaries in 1-to-3-year-olds were more similar to adults than neonates. While the age-specific group parcellation fitted better to the underlying functional connectivity in individuals during the first 3 years, adult area parcellations might still have some utility in developmental studies, especially in children older than 6 years. Additionally, we provided connectivity-based community assignments of the parcels, showing fragmented anterior and posterior components based on the strongest connectivity, yet alignment with adult systems when weaker connectivity was included.
Journal Article
Real-time motion monitoring improves functional MRI data quality in infants
2021
Imaging the infant brain with MRI has improved our understanding of early stages of neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are commonly scanned while asleep, they commonly exhibit motion during scanning, causing data loss. Our group has shown that providing MRI technicians with real-time motion estimates via Framewise Integrated Real-Time MRI Monitoring (FIRMM) software helps obtain high-quality, low motion fMRI data. By estimating head motion in real time and displaying motion metrics to the MR technician during an fMRI scan, FIRMM can improve scanning efficiency. Hence, we compared average framewise displacement (FD), a proxy for head motion, and the amount of usable fMRI data (FD ≤ 0.2mm) in infants scanned with (n = 407) and without FIRMM (n = 295). Using a mixed-effects model, we found that the addition of FIRMM to current state-of-the-art infant scanning protocols significantly increased the amount of usable fMRI data acquired per infant, demonstrating its value for research and clinical infant neuroimaging.