Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,371 result(s) for "Kennedy, Alan T"
Sort by:
The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0
Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea ice, and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the HadCM3 coupled general circulation model. This model was developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies, but has now been largely superseded for many scientific studies by more recently developed models. However, it continues to be extensively used by various institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that the original documentation is not entirely representative, and several other relatively undocumented configurations are in use. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B), the coupled model with a low-resolution ocean (HadCM3BL), the high-resolution atmosphere-only model (HadAM3BH), and the regional model (HadRM3B). These also include three versions of the land surface scheme. By comparing with observational datasets, we show that these models produce a good representation of many aspects of the climate system, including the land and sea surface temperatures, precipitation, ocean circulation, and vegetation. This evaluation, combined with the relatively fast computational speed (up to 1000 times faster than some CMIP6 models), motivates continued development and scientific use of the HadCM3B family of coupled climate models, predominantly for quantifying uncertainty and for long multi-millennial-scale simulations.
Projected risks associated with heat stress in the UK Climate Projections (UKCP18)
Summer heat extremes in the UK pose a risk to health (amongst other sectors) and this is exacerbated by localised socio-economic factors that contribute to vulnerability. Here, regional climate model simulations from the UK Climate Projections are used to assess how different elements of extreme heat will vary across the UK in the future under global mean surface temperature warming levels of +1.5 °C, +2.0 °C and +3.0 °C above pre-industrial. Heat stress metrics incorporating daily maximum and minimum temperature, temperature variability and vapour pressure are included. These show qualitatively similar spatial patterns for the recent past, with the most pronounced heat hazards found in south-eastern regions of the UK. Projected heat hazard changes across the UK are not homogeneous, with southern regions (e.g. Greater London, South East) showing greater increases in maximum temperatures and northern regions (e.g. Scotland and Northern Ireland) showing greater increases in humidity. With +3.0 °C warming, the relative change in combined heat hazards is found to be greatest in the south-western UK, however, in absolute terms, south-eastern regions will still experience the greatest hazards. When combined with socio-economic factors, hotspots of high heat stress risk emerge in parts of London, the Midlands and eastern England along with southern and eastern coastal regions. Weighting of different heat risk factors is subjective and to this end we have developed and made available an interactive app which allows users to assess sensitivities and uncertainties in the projected UK heat risk.
Changes in the high-latitude Southern Hemisphere through the Eocene–Oligocene transition: a model–data comparison
The global and regional climate changed dramatically with the expansion of the Antarctic Ice Sheet at the Eocene–Oligocene transition (EOT). These large-scale changes are generally linked to declining atmospheric pCO2 levels and/or changes in Southern Ocean gateways such as the Drake Passage around this time. To better understand the Southern Hemisphere regional climatic changes and the impact of glaciation on the Earth's oceans and atmosphere at the EOT, we compiled a database of 10 ocean and 4 land-surface temperature reconstructions from a range of proxy records and compared this with a series of fully coupled, low-resolution climate model simulations from two models (HadCM3BL and FOAM). Regional patterns in the proxy records of temperature show that cooling across the EOT was less at high latitudes and greater at mid-latitudes. While certain climate model simulations show moderate–good performance at recreating the temperature patterns shown in the data before and after the EOT, in general the model simulations do not capture the absolute latitudinal temperature gradient shown by the data, being too cold, particularly at high latitudes. When taking into account the absolute temperature before and after the EOT, as well as the change in temperature across it, simulations with a closed Drake Passage before and after the EOT or with an opening of the Drake Passage across the EOT perform poorly, whereas simulations with a drop in atmospheric pCO2 in combination with ice growth generally perform better. This provides further support for previous research that changes in atmospheric pCO2 are more likely to have been the driver of the EOT climatic changes, as opposed to the opening of the Drake Passage.
The biological carbon pump in CMIP6 models
The biological carbon pump (BCP) stores ∼1,700 Pg C from the atmosphere in the ocean interior, but the magnitude and direction of future changes in carbon sequestration by the BCP are uncertain. We quantify global trends in export production, sinking organic carbon fluxes, and sequestered carbon in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) future projections, finding a consistent 19 to 48 Pg C increase in carbon sequestration over the 21st century for the SSP3-7.0 scenario, equivalent to 5 to 17% of the total increase of carbon in the ocean by 2100. This is in contrast to a global decrease in export production of –0.15 to –1.44 Pg C y−1. However, there is significant uncertainty in the modeled future fluxes of organic carbon to the deep ocean associated with a range of different processes resolved across models. We demonstrate that organic carbon fluxes at 1,000 mare a good predictor of long-term carbon sequestration and suggest this is an important metric of the BCP that should be prioritized in future model studies.
Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography
A striking feature of the marine fossil record is the variable intensity of extinction during superficially similar climate transitions. Here we combine climate models and species trait simulations to explore the degree to which differing palaeogeographic boundary conditions and differing magnitudes of cooling and glaciation can explain the relative intensity of marine extinction during greenhouse–icehouse transitions in the Late Ordovician and the Cenozoic. Simulations modelled the response of virtual species to cooling climate using a spatially explicit cellular automaton algorithm. We find that palaeogeography alone may be a contributing factor, as identical changes in meridional sea surface temperature gradients caused greater extinction in Late Ordovician simulations than in Cenozoic simulations. Differences in extinction from palaeogeography are significant, but by themselves are insufficient to explain observed differences in extinction intensity. However, when simulations included inferred changes in continental flooding and interval-specific models of sea surface temperature, predicted differences in relative extinction intensity were more consistent with observations from the fossil record. Our results support the hypothesis that intense extinction in the Late Ordovician is partially attributable to exceptionally rapid and severe cooling compared to Cenozoic events.
Eocene to Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO2
The greenhouse-to-icehouse climate transition from the Eocene into the Oligocene is well documented by sea surface temperature records from the southwest Pacific and Antarctic margin, which show evidence of pronounced long-term cooling. However, identification of a driving mechanism depends on a better understanding of whether this cooling was also present in terrestrial settings. Here, we present a semi-continuous terrestrial temperature record spanning from the middle Eocene to the early Oligocene (~41–33 million years ago), using bacterial molecular fossils (biomarkers) preserved in a sequence of southeast Australian lignites. Our results show that mean annual temperatures in southeast Australia gradually declined from ~27 °C (±4.7 °C) during the middle Eocene to ~22–24 °C (±4.7 °C) during the late Eocene, followed by a ~2.4 °C-step cooling across the Eocene/Oligocene boundary. This trend is comparable to other temperature records in the Southern Hemisphere, suggesting a common driving mechanism, likely p CO 2 . We corroborate these results with a suite of climate model simulations demonstrating that only simulations including a decline in p CO 2 lead to a cooling in southeast Australia consistent with our proxy record. Our data form an important benchmark for testing climate model performance, sea–land interaction and climatic forcings at the onset of a major Antarctic glaciation. Terrestrial Southern Hemisphere cooling through the Eocene–Oligocene transition points to decreasing atmospheric CO 2 dominantly driving global change, according to biomarker records from southeast Australian coals and palaeoclimate modelling.
The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
The Eocene-Oligocene transition (EOT) from a largely ice-free greenhouse world to an icehouse climate with the first major glaciation of Antarctica was a phase of major climate and environmental change occurring ~34 million years ago (Ma) and lasting ~500 kyr. The change is marked by a global shift in deep sea d18O representing a combination of deep-ocean cooling and global ice sheet growth. At the same time, multiple independent proxies for sea surface temperature indicate a surface ocean cooling, and major changes in global fauna and flora record a shift toward more cold-climate adapted species. The major explanations of this transition that have been suggested are a decline in atmospheric CO2, and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. This work reviews and synthesises proxy evidence of paleogeography, temperature, ice sheets, ocean circulation, and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of model simulations of temperature change across the EOT. The model simulations compare three forcing mechanisms across the EOT: CO2 decrease, paleogeographic changes, and ice sheet growth. We find that CO2 forcing provides by far the best explanation of the combined proxy evidence, and based on our model ensemble, we estimate that a CO2 decrease of about 1.6x across the EOT (e.g. from 910 to 560 ppmv) achieves the best fit to the temperature change recorded in the proxies. This model-derived CO2 decrease is consistent with proxy estimates of CO2 decline at the EOT.
Hepatitis E virus in blood components: a prevalence and transmission study in southeast England
The prevalence of hepatitis E virus (HEV) genotype 3 infections in the English population (including blood donors) is unknown, but is probably widespread, and the virus has been detected in pooled plasma products. HEV-infected donors have been retrospectively identified through investigation of reported cases of possible transfusion-transmitted hepatitis E. The frequency of HEV transmission by transfusion and its outcome remains unknown. We report the prevalence of HEV RNA in blood donations, the transmission of the virus through a range of blood components, and describe the resulting morbidity in the recipients. From Oct 8, 2012, to Sept 30, 2013, 225 000 blood donations that were collected in southeast England were screened retrospectively for HEV RNA. Donations containing HEV were characterised by use of serology and genomic phylogeny. Recipients, who received any blood components from these donations, were identified and the outcome of exposure was ascertained. 79 donors were viraemic with genotype 3 HEV, giving an RNA prevalence of one in 2848. Most viraemic donors were seronegative at the time of donation. The 79 donations had been used to prepare 129 blood components, 62 of which had been transfused before identification of the infected donation. Follow-up of 43 recipients showed 18 (42%) had evidence of infection. Absence of detectable antibody and high viral load in the donation rendered infection more likely. Recipient immunosuppression delayed or prevented seroconversion and extended the duration of viraemia. Three recipients cleared longstanding infection after intervention with ribavirin or alteration in immunosuppressive therapy. Ten recipients developed prolonged or persistent infection. Transaminitis was common, but short-term morbidity was rare; only one recipient developed apparent but clinically mild post-transfusion hepatitis. Our findings suggest that HEV genotype 3 infections are widespread in the English population and in blood donors. Transfusion-transmitted infections rarely caused acute morbidity, but in some immunosuppressed patients became persistent. Although at present blood donations are not screened, an agreed policy is needed for the identification of patients with persistent HEV infection, irrespective of origin, so that they can be offered antiviral therapy. Public Health England and National Health Service Blood and Transplant.