Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
166 result(s) for "Kerfeld, Cheryl A"
Sort by:
Structures of a phycobilisome in light-harvesting and photoprotected states
Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae 1 , 2 . These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching 3 – 6 . Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP–PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties 7 , we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems. Cryogenic electron microscopy structures of the Synechocystis phycobilisome—alone and bound with orange carotenoid protein—reveal detailed information regarding the biophysical basis of the control of cyanobacterial light harvesting.
A catalog of the diversity and ubiquity of bacterial microcompartments
Bacterial microcompartments (BMCs) are organelles that segregate segments of metabolic pathways which are incompatible with surrounding metabolism. BMCs consist of a selectively permeable shell, composed of three types of structurally conserved proteins, together with sequestered enzymes that vary among functionally distinct BMCs. Genes encoding shell proteins are typically clustered with those for the encapsulated enzymes. Here, we report that the number of identifiable BMC loci has increased twenty-fold since the last comprehensive census of 2014, and the number of distinct BMC types has doubled. The new BMC types expand the range of compartmentalized catalysis and suggest that there is more BMC biochemistry yet to be discovered. Our comprehensive catalog of BMCs provides a framework for their identification, correlation with bacterial niche adaptation, experimental characterization, and development of BMC-based nanoarchitectures for biomedical and bioengineering applications. Bacterial microcompartments (BMCs) are organelles consisting of a protein shell in which certain metabolic reactions take place separated from the cytoplasm. Here, Sutter et al. present a comprehensive catalog of BMC loci, substantially expanding the number of known BMCs and describing distinct types and compartmentalized reactions.
Programmed loading and rapid purification of engineered bacterial microcompartment shells
Bacterial microcompartments (BMCs) are selectively permeable proteinaceous organelles which encapsulate segments of metabolic pathways across bacterial phyla. They consist of an enzymatic core surrounded by a protein shell composed of multiple distinct proteins. Despite great potential in varied biotechnological applications, engineering efforts have been stymied by difficulties in their isolation and characterization and a dearth of robust methods for programming cores and shell permeability. We address these challenges by functionalizing shell proteins with affinity handles, enabling facile complementation-based affinity purification (CAP) and specific cargo docking sites for efficient encapsulation via covalent-linkage (EnCo). These shell functionalizations extend our knowledge of BMC architectural principles and enable the development of minimal shell systems of precisely defined structure and composition. The generalizability of CAP and EnCo will enable their application to functionally diverse microcompartment systems to facilitate both characterization of natural functions and the development of bespoke shells for selectively compartmentalizing proteins. Bacterial microcompartments are protein-bound organelles encapsulating segments of metabolic pathways. Here the authors functionalise shell proteins to facilitate facile purification and enable cargo encapsulation via covalent linkage.
Bacterial microcompartments: catalysis-enhancing metabolic modules for next generation metabolic and biomedical engineering
Bacterial cells have long been thought to be simple cells with little spatial organization, but recent research has shown that they exhibit a remarkable degree of subcellular differentiation. Indeed, bacteria even have organelles such as magnetosomes for sensing magnetic fields or gas vesicles controlling cell buoyancy. A functionally diverse group of bacterial organelles are the bacterial microcompartments (BMCs) that fulfill specialized metabolic needs. Modification and reengineering of these BMCs enable innovative approaches for metabolic engineering and nanomedicine.
Cyanobacterial photoprotection by the orange carotenoid protein
In photosynthetic organisms, the production of dangerous oxygen species is stimulated under high irradiance. To cope with this stress, these organisms have evolved photoprotective mechanisms. One type of mechanism functions to decrease the energy arriving at the photochemical centres by increasing thermal dissipation at the level of antennae. In cyanobacteria, the trigger for this mechanism is the photoactivation of a soluble carotenoid protein, the orange carotenoid protein (OCP), which is a structurally and functionally modular protein. The inactive orange form (OCP o ) is compact and globular, with the carotenoid spanning the effector and the regulatory domains. In the active red form (OCP r ), the two domains are completely separated and the carotenoid has translocated entirely into the effector domain. The activated OCP r interacts with the phycobilisome (PBS), the cyanobacterial antenna, and induces excitation-energy quenching. A second protein, the fluorescence recovery protein (FRP), dislodges the active OCP r from the PBSs and accelerates its conversion to the inactive OCP. Photosynthetic organisms must protect themselves from damage during high-light conditions. This Review shows how cyanobacteria trigger such photoprotection using the orange carotenoid protein.
A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel Scoring Method
Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found in seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications.
Characterization of a novel aromatic substrate-processing microcompartment in Actinobacteria
We have discovered a new cluster of genes that is found exclusively in the Actinobacteria phylum. This locus includes genes for the 2-aminophenol meta -cleavage pathway and the shell proteins of a bacterial microcompartment (BMC) and has been named aromatics (ARO) for its putative role in the breakdown of aromatic compounds. In this study, we provide details about the distribution and composition of the ARO BMC locus and conduct phylogenetic, structural, and functional analyses of the first two enzymes in the catabolic pathway: a unique 2-aminophenol dioxygenase, which is exclusively found alongside BMC shell genes in Actinobacteria, and a semialdehyde dehydrogenase, which works downstream of the dioxygenase. Genomic analysis reveals variations in the complexity of the ARO loci across different orders. Some loci are simple, containing shell proteins and enzymes for the initial steps of the catabolic pathway, while others are extensive, encompassing all the necessary genes for the complete breakdown of 2-aminophenol into pyruvate and acetyl-CoA. Furthermore, our analysis uncovers two subtypes of ARO BMC that likely degrade either 2-aminophenol or catechol, depending on the presence of a pathway-specific gene within the ARO locus. The precise precursor of 2-aminophenol, which serves as the initial substrate and/or inducer for the ARO pathway, remains unknown, as our model organism Micromonospora rosaria cannot utilize 2-aminophenol as its sole energy source. However, using enzymatic assays, we demonstrate the dioxygenase’s ability to cleave both 2-aminophenol and catechol in vitro , in collaboration with the aldehyde dehydrogenase, to facilitate the rapid conversion of these unstable and toxic intermediates. Bacterial microcompartments (BMCs) are proteinaceous organelles that are widespread among bacteria and provide a competitive advantage in specific environmental niches. Studies have shown that the genetic information necessary to form functional BMCs is encoded in loci that contain genes encoding shell proteins and the enzymatic core. This allows the bioinformatic discovery of BMCs with novel functions and expands our understanding of the metabolic diversity of BMCs. ARO loci, found only in Actinobacteria, contain genes encoding for phylogenetically remote shell proteins and homologs of the meta -cleavage degradation pathway enzymes that were shown to convert central aromatic intermediates into pyruvate and acetyl-CoA in gamma Proteobacteria. By analyzing the gene composition of ARO BMC loci and characterizing two core enzymes phylogenetically, structurally, and functionally, we provide an initial functional characterization of the ARO BMC, the most unusual BMC identified to date, distinctive among the repertoire of studied BMCs.
Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs
The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO, to a red form, OCPR. Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1O2) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1O2 quenching.
The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle
Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen.
BMC Caller: a webtool to identify and analyze bacterial microcompartment types in sequence data
Bacterial microcompartments (BMCs) are protein-based organelles found across the bacterial tree of life. They consist of a shell, made of proteins that oligomerize into hexagonally and pentagonally shaped building blocks, that surrounds enzymes constituting a segment of a metabolic pathway. The proteins of the shell are unique to BMCs. They also provide selective permeability; this selectivity is dictated by the requirements of their cargo enzymes. We have recently surveyed the wealth of different BMC types and their occurrence in all available genome sequence data by analyzing and categorizing their components found in chromosomal loci using HMM (Hidden Markov Model) protein profiles. To make this a “do-it yourself” analysis for the public we have devised a webserver, BMC Caller ( https://bmc-caller.prl.msu.edu ), that compares user input sequences to our HMM profiles, creates a BMC locus visualization, and defines the functional type of BMC, if known. Shell proteins in the input sequence data are also classified according to our function-agnostic naming system and there are links to similar proteins in our database as well as an external link to a structure prediction website to easily generate structural models of the shell proteins, which facilitates understanding permeability properties of the shell. Additionally, the BMC Caller website contains a wealth of information on previously analyzed BMC loci with links to detailed data for each BMC protein and phylogenetic information on the BMC shell proteins. Our tools greatly facilitate BMC type identification to provide the user information about the associated organism’s metabolism and enable discovery of new BMC types by providing a reference database of all currently known examples.