Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
154 result(s) for "Kershaw, A. Peter"
Sort by:
The Aftermath of Megafaunal Extinction: Ecosystem Transformation in Pleistocene Australia
Giant vertebrates dominated many Pleistocene ecosystems. Many were herbivores, and their sudden extinction in prehistory could have had large ecological impacts. We used a high-resolution 130,000-year environmental record to help resolve the cause and reconstruct the ecological consequences of extinction of Australia's megafauna. Our results suggest that human arrival rather than climate caused megafaunal extinction, which then triggered replacement of mixed rainforest by sclerophyll vegetation through a combination of direct effects on vegetation of relaxed herbivore pressure and increased fire in the landscape. This ecosystem shift was as large as any effect of climate change over the last glacial cycle, and indicates the magnitude of changes that may have followed megafaunal extinction elsewhere in the world.
Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia
Environmental histories that span the last full glacial cycle and are representative of regional change in Australia are scarce, hampering assessment of environmental change preceding and concurrent with human dispersal on the continent ca. 47,000 years ago. Here we present a continuous 150,000-year record offshore south-western Australia and identify the timing of two critical late Pleistocene events: wide-scale ecosystem change and regional megafaunal population collapse. We establish that substantial changes in vegetation and fire regime occurred ∼70,000 years ago under a climate much drier than today. We record high levels of the dung fungus Sporormiella , a proxy for herbivore biomass, from 150,000 to 45,000 years ago, then a marked decline indicating megafaunal population collapse, from 45,000 to 43,100 years ago, placing the extinctions within 4,000 years of human dispersal across Australia. These findings rule out climate change, and implicate humans, as the primary extinction cause. Megafaunal extinction in Australia has been attributed to both climate change and human causation. Here, van der Kaars et al . present a 150,000 year record offshore southwest Australia in which they refine the timing and nature of regional ecosystem changes and megafaunal population collapse.
Geographic variation in the ecological effects of extinction of Australia's Pleistocene megafauna
Recent studies suggest that extinction of Pleistocene megafauna had large impacts on the structure and functioning of ecosystems, including increased fire and shifts in vegetation state. We argue that the ecological effects of mega‐herbivore extinction are likely to have varied geographically, and might have been reduced in environments of low productivity. We tested this at Caledonia Fen, a cool, high‐elevation site in southeast Australia with a palynological record reaching back approximately 140 ka. The dung fungus Sporormiella indicated that large herbivores were present through most of the early part of the last glacial cycle, but declined abruptly between 50–40 ka and did not recover. This event corresponds with evidence for continent‐wide extinction of Australia's Pleistocene megafauna at that time. An earlier episode of low Sporormiella occurrence coincided with evidence of raised water levels in the fen. Changes in wetland conditions can alter the accumulation of Sporormiella, but there was no such change when Sporormiella counts fell in the period 50–40 ka. We found no evidence that the decline in Sporormiella triggered increased fire or a change in vegetation, which remained a low grass/shrub steppe. This contrasts with a warmer and more humid site, Lynch's Crater in northeast Australia, where decline of dung fungi was followed by increased fire and transition from mixed sclerophyll forest and rainforest to uniform sclerophyll forest. Our results suggest that the magnitude of ecological responses to Pleistocene megafaunal extinction varied geographically, under the control of regional climates.
Disruption of cultural burning promotes shrub encroachment and unprecedented wildfires
Recent catastrophic fires in Australia and North America have raised broad-scale questions about how the cessation of Indigenous burning practices has impacted fuel accumulation and structure. For sustainable coexistence with fire, a better understanding of the ancient nexus between humans and flammable landscapes is needed. We used novel palaeoecological modeling and charcoal compilations to reassess evidence for changes in land cover and fire activity, focusing on southeast Australia before and after British colonization. Here, we provide what we believe is the first quantitative evidence that the region’s forests and woodlands contained fewer shrubs and more grass before colonization. Changes in vegetation, fuel structures, and connectivity followed different trajectories in different vegetation types. The pattern is best explained by the disruption of Indigenous vegetation management caused by European settlement. Combined with climate-change impacts on fire weather and drought, the widespread absence of Indigenous fire management practices likely preconditioned fire-prone regions for wildfires of unprecedented extent.
Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial
Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the ‘bipolar seesaw’). Here we exploit a bidecadally resolved 14 C data set obtained from New Zealand kauri ( Agathis australis ) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14 C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train. A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14 C and 10 Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.
Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period
The El Niño/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial–interglacial cycle 1 . ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time 2 , 3 , but the proposals disagree on whether increased frequency of El Niño events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Niño events (summer precipitation declines in El Niño years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard–Oeschger events—millennial-scale warm events in the North Atlantic climate record—although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (∼11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.
Past and future global transformation of terrestrial ecosystems under climate change
Terrestrial ecosystems will be transformed by current anthropogenic change, but the extent of this change remains a challenge to predict. Nolan et al. looked at documented vegetational and climatic changes at almost 600 sites worldwide since the last glacial maximum 21,000 years ago. From this, they determined vegetation responses to temperature changes of 4° to 7°C. They went on to estimate the extent of ecosystem changes under current similar (albeit more rapid) scenarios of warming. Without substantial mitigation efforts, terrestrial ecosystems are at risk of major transformation in composition and structure. Science , this issue p. 920 Global vegetation change since the Last Glacial Maximum is used as an indicator of transformation under warming scenarios. Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.
A continental perspective on the timing of environmental change during the last glacial stage in Australia
The timing and duration of the coldest period in the last glacial stage, often referred to as the last glacial maximum (LGM), has been observed to vary spatially and temporally. In Australia, this period is characterised by colder, and in some places more arid, climates than today. We applied Monte-Carlo change point analysis to all available continuous proxy records covering this period, primarily pollen records, from across Australia (n = 37) to assess this change. We find a significant change point occurred (within uncertainty) at 28.6 ± 2.8 ka in 25 records. We interpret this change as a shift to cooler climates, associated with a widespread decline in biological productivity. An additional change point occurred at 17.7 ± 2.2 ka in 24 records. We interpret this change as a shift towards warmer climates, associated with increased biological productivity. We broadly characterise the period between 28.6 (± 2.8) – 17.7 (± 2.2) ka as an extended period of maximum cooling, with low productivity vegetation that may have occurred as a combined response to reduced temperatures, lower moisture availability and atmospheric CO2. These results have implications for how the spatial and temporal coherence of climate change, in this case during the LGM, can be best interrogated and interpreted.
The SahulCHAR collection: a palaeofire database for Australia, New Guinea, and New Zealand
Recent global fire activity has highlighted the importance of understanding fire dynamics across time and space, with records of past fire (palaeofire) providing valuable insights to inform us on current and future management challenges. New records from the recent increase in palaeofire studies from Australia and surrounds have not been captured in any database for broader comparisons, and Australasia is poorly represented in current international databases used for global modelling of palaeofire trends. These problems are addressed by SahulCHAR, a new collection of sedimentary charcoal and black carbon records from Sahul (Australia, New Guinea, and offshore islands) and Aotearoa / New Zealand. Data are stored in the OCTOPUS relational database platform, with a structure designed for compatibility with the existing Global Paleofire Database. Metadata are captured at the site level and observation level, with observations including age determinations and charcoal or black carbon data. SahulCHAR version 1 contains 687 records of charcoal or black carbon, including digitized data, unchanged and modified records from the Global Paleofire Database, and original author-submitted data. SahulCHAR is a much-needed update to past regional palaeofire compilations that will also provide greater representation of records from Sahul and Aotearoa / New Zealand in future global syntheses.
The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period
Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73–15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL), 40Ar∕39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.