Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
846
result(s) for
"Khan, Jawad"
Sort by:
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
by
Khan, M. Jawad
,
Hong, Melissa J.
,
Hong, Keum-Shik
in
Accuracy
,
Brain
,
brain-computer interface
2018
In this study, a brain-computer interface (BCI) framework for hybrid functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) for locked-in syndrome (LIS) patients is investigated. Brain tasks, channel selection methods, and feature extraction and classification algorithms available in the literature are reviewed. First, we categorize various types of patients with cognitive and motor impairments to assess the suitability of BCI for each of them. The prefrontal cortex is identified as a suitable brain region for imaging. Second, the brain activity that contributes to the generation of hemodynamic signals is reviewed. Mental arithmetic and word formation tasks are found to be suitable for use with LIS patients. Third, since a specific targeted brain region is needed for BCI, methods for determining the region of interest are reviewed. The combination of a bundled-optode configuration and threshold-integrated vector phase analysis turns out to be a promising solution. Fourth, the usable fNIRS features and EEG features are reviewed. For hybrid BCI, a combination of the signal peak and mean fNIRS signals and the highest band powers of EEG signals is promising. For classification, linear discriminant analysis has been most widely used. However, further research on vector phase analysis as a classifier for multiple commands is desirable. Overall, proper brain region identification and proper selection of features will improve classification accuracy. In conclusion, five future research issues are identified, and a new BCI scheme, including brain therapy for LIS patients and using the framework of hybrid fNIRS-EEG BCI, is provided.
Journal Article
Monkeypox Detection Using CNN with Transfer Learning
2023
Monkeypox disease is caused by a virus that causes lesions on the skin and has been observed on the African continent in the past years. The fatal consequences caused by virus infections after the COVID pandemic have caused fear and panic among the public. As a result of COVID reaching the pandemic dimension, the development and implementation of rapid detection methods have become important. In this context, our study aims to detect monkeypox disease in case of a possible pandemic through skin lesions with deep-learning methods in a fast and safe way. Deep-learning methods were supported with transfer learning tools and hyperparameter optimization was provided. In the CNN structure, a hybrid function learning model was developed by customizing the transfer learning model together with hyperparameters. Implemented on the custom model MobileNetV3-s, EfficientNetV2, ResNET50, Vgg19, DenseNet121, and Xception models. In our study, AUC, accuracy, recall, loss, and F1-score metrics were used for evaluation and comparison. The optimized hybrid MobileNetV3-s model achieved the best score, with an average F1-score of 0.98, AUC of 0.99, accuracy of 0.96, and recall of 0.97. In this study, convolutional neural networks were used in conjunction with optimization of hyperparameters and a customized hybrid function transfer learning model to achieve striking results when a custom CNN model was developed. The custom CNN model design we have proposed is proof of how successfully and quickly the deep learning methods can achieve results in classification and discrimination.
Journal Article
Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface
by
Khan, M. Jawad
,
Hong, Melissa Jiyoun
,
Hong, Keum-Shik
in
Accuracy
,
arithmetic mental task
,
Brain
2014
The hybrid brain-computer interface (BCI)'s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG) technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, \"forward,\" \"backward,\" \"left,\" and \"right.\" The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology.
Journal Article
A new hybrid image denoising algorithm using adaptive and modified decision-based filters for enhanced image quality
2025
Denoising is one of the most important processes in digital image processing to recover visual quality and structural integrity in images. Traditional methods often suffer from limitations like computational complexity, over-smoothing, and the inability to preserve critical details, particularly edges. This paper introduces a hybrid denoising algorithm combining Adaptive Median Filter (AMF) and Modified Decision-Based Median Filter (MDBMF) to address these challenges. The AMF adjusts the window sizes dynamically to precisely detect noisy pixels, and MDBMF selectively recovers corrupted pixels without affecting intact regions, effectively reducing noise while preserving edges. The subjective analysis is supplemented with objective analyses in which visual quality proves that hybrid approach performance considerably outperforms existing state-of-the-art methods. The test is conducted on nine benchmark images standard and medical dataset, namely, Chest and Liver images with different noise densities in the range from 10 to 90%. Quantitative evaluations PSNR, MSE, IEF, SSIM, FOM and VIF clearly show the performance superiority of the hybrid approach when compared to the state-of-the-art approaches. The improvement in PSNR was up to 2.34 dB, IEF improvement was more than 20%, and the improvement in MSE was up to 15% improvement over other methods like BPDF, AT2FF, and SVMMF. Improvement in the values of SSIM is up to 0.07, which confirms improved structural similarity. Furthermore, the FOM and VIF metrics demonstrate the remarkable performance of the hybrid approach: both the FOM and VIF exceeded all other denoising techniques evaluated, reaching 0.68 and 0.61, respectively.
Journal Article
Robust ensemble classifier for advanced synthetic aperture radar target classification in diverse operational conditions
2025
This paper presents an enhanced ensemble classification framework for Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) under diverse operational conditions, including Standard Operating Conditions (SOC) and Extended Operating Conditions (EOC). The proposed method integrates the strengths of Residual Neural Networks (ResNet) replacing Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and template matching, leveraging majority voting to combine their complementary capabilities. The ensemble framework achieves improved robustness and classification accuracy across varied scenarios. The methodology employs ResNet, a deep learning architecture known for its superior feature extraction and classification capabilities, replacing AlexNet to address limitations in generalization and consistency. ResNet demonstrated better performance with average accuracies of 92.67% under SOC and 88.9% under EOC, showing consistent results across all six target classes, as compared to the CNN-based ensemble approach with average accuracies of 90.30% under SOC and 87.22% under EOC. The SVM is employed for its robustness in handling overfitting and classifying features extracted from 16 region properties. Template matching is included for its resilience in challenging conditions where deep learning techniques may underperform. Experimental validation using the MSTAR dataset, a standard benchmark for SAR ATR, highlights the effectiveness of this ensemble approach. The results confirm significant improvements in classification accuracy and robustness over individual classifiers, demonstrating the practical applicability of the ensemble approach to real-world SAR ATR challenges. This research advances SAR ATR by addressing critical challenges, including noise, occlusion, and variations in viewing angles while achieving high classification performance under diverse conditions. The integration of ResNet further enhances the framework’s adaptability and reliability.
Journal Article
Energy optimization and plant comfort management in smart greenhouses using the artificial bee colony algorithm
2025
Agriculture is an essential component of human sustenance in this world. These days, with a growing population, we must significantly increase agricultural productivity to meet demand. Agriculture moved toward technologies as a result of the demand for higher yields with less resources. Increasing awareness of the significance and influence of agricultural practices in global climate change has made the use of energy-efficient innovations a vital aspect of the agriculture sector. The use of greenhouses to provide controlled environments that encourage effective plant growth is one of the current associated approaches. If not properly maintained, the energy used to run the greenhouses’ chillers, heaters, humidifiers, carbon dioxide (CO₂) generators, and carbon emissions becomes expensive. The goal of this research is to create a sustainable greenhouse model while achieving the best plant growth requirements with minimal use of energy. In order to achieve the lowest possible amount of energy consumption, the optimization model considered temperature, humidity, CO₂ levels, and sunlight as essential parameters in the environment. The Artificial Bee Colony (ABC) optimization technique was utilized for setting the environmental parameters for plant growth, considered for the suggested system. The system’s inputs were plant-preferred factors, and plant comfort was achieved by applying ABC to boost the parameters’ efficiency. A fuzzy controller was utilized to regulate different devices, including humidifiers, heaters, chillers, and CO₂ generators, by entering the introduced values. The overall efficacy of the fuzzy controllers that switch On/Off the actuators was obtained by minimizing the error between the best estimates of environmental factors and the ABC optimized values. Additionally, the suggested method was contrasted with other effective algorithms, such as Genetic Algorithm (GA), Firefly Algorithm (FA), and Ant Colony Optimization (ACO). Based on the results of the comparison analysis between the ABC algorithm and current practices, present procedures do not minimize the fluctuations in the inaccuracy between the target and actual environmental parameters, which is a necessary step towards increasing energy efficiency. The suggested method used 162.19 kWh for temperature control, 84.65405 kWh for Humidity, 131.2013 kWh for Sunlight, and 603.55208 kWh for CO₂ management, indicating the maximum energy efficiency. ACO needed 172.2621 kWh, 88.269 kWh, 175.7127 kWh, and 713.2125 kWh, in contrast to FA 169.7983 kWh, 86.04496 kWh, 155.8442 kWh, and 743.7986 kWh. Temperature, Humidity, Sunlight, and CO₂ were measured by GA at 164.1609 kWh, 86.19566 kWh, 174.6429 kWh, and 734.9514 kWh, respectively. In terms of Plant comfort, the suggested approach also outperformed 0.986770848 ACO (0.944043), FA (0.949832), and GA (0.946076). It is important to note that the research being done has the potential to minimize operating costs and maximize the amount of energy needed for plant growth, thereby creating a model for sustainable greenhouse agriculture.
Journal Article
Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images
by
Khan, Jawad
,
Gürüler, Hüseyin
,
Özkaraca, Osman
in
Accuracy
,
Algorithms
,
Artificial neural networks
2023
Brain MR images are the most suitable method for detecting chronic nerve diseases such as brain tumors, strokes, dementia, and multiple sclerosis. They are also used as the most sensitive method in evaluating diseases of the pituitary gland, brain vessels, eye, and inner ear organs. Many medical image analysis methods based on deep learning techniques have been proposed for health monitoring and diagnosis from brain MRI images. CNNs (Convolutional Neural Networks) are a sub-branch of deep learning and are often used to analyze visual information. Common uses include image and video recognition, suggestive systems, image classification, medical image analysis, and natural language processing. In this study, a new modular deep learning model was created to retain the existing advantages of known transfer learning methods (DenseNet, VGG16, and basic CNN architectures) in the classification process of MR images and eliminate their disadvantages. Open-source brain tumor images taken from the Kaggle database were used. For the training of the model, two types of splitting were utilized. First, 80% of the MRI image dataset was used in the training phase and 20% in the testing phase. Secondly, 10-fold cross-validation was used. When the proposed deep learning model and other known transfer learning methods were tested on the same MRI dataset, an improvement in classification performance was obtained, but an increase in processing time was observed.
Journal Article
Early Detection of Hemodynamic Responses Using EEG: A Hybrid EEG-fNIRS Study
by
Khan, M. Jawad
,
Ghafoor, Usman
,
Hong, Keum-Shik
in
Accuracy
,
Brain
,
brain-computer interface (BCI)
2018
Enhanced classification accuracy and a sufficient number of commands are highly demanding in brain computer interfaces (BCIs). For a successful BCI, early detection of brain commands in time is essential. In this paper, we propose a novel classifier using a modified vector phase diagram and the power of electroencephalography (EEG) signal for early prediction of hemodynamic responses. EEG and functional near-infrared spectroscopy (fNIRS) signals for a motor task (thumb tapping) were obtained concurrently. Upon the resting state threshold circle in the vector phase diagram that uses the maximum values of oxy- and deoxy-hemoglobin (Δ
and Δ
) during the resting state, we introduce a secondary (inner) threshold circle using the Δ
and Δ
magnitudes during the time window of 1 s where an EEG activity is noticeable. If the trajectory of Δ
and Δ
touches the resting state threshold circle after passing through the inner circle, this indicates that Δ
was increasing and Δ
was decreasing (i.e., the start of a hemodynamic response). It takes about 0.5 s for an fNIRS signal to cross the resting state threshold circle after crossing the EEG-based circle. Thus, an fNIRS-based BCI command can be generated in 1.5 s. We achieved an improved accuracy of 86.0% using the proposed method in comparison with the 63.8% accuracy obtained using linear discriminant analysis in a window of 0~1.5 s. Moreover, the active brain locations (identified using the proposed scheme) were spatially specific when a
map was made after 10 s of stimulation. These results demonstrate the possibility of enhancing the classification accuracy for a brain-computer interface with a time window of 1.5 s using the proposed method.
Journal Article
Improving lung cancer detection with enhanced convolutional sequential networks
2025
Lung cancer is the most common cause of cancer-related deaths worldwide, and early detection is extremely important for improving survival. According to the National Institute of Health Sciences, lung cancer has the highest rate of cancer mortality, according to the National Institute of Health Sciences. Medical professionals are usually based on clinical imaging methods such as MRI, X-ray, biopsy, ultrasound, and CT scans. However, these imaging techniques often face challenges including false positives, false negatives, and sensitivity. Deep learning approaches, particularly folding networks (CNNS), have arisen as they tackle these issues. However, traditional CNN models often suffer from high computing complexity, slow inference times and over adaptation in real-world clinical data. To overcome these limitations, we propose an optimized sequential folding network (SCNN) that maintains a high level of classification accuracy, simultaneously reducing processing time and computing load. The SCNN model consists of three folding layers, three maximum pooling layers, flat layers and dense layers, allowing for efficient and accurate classification. In the histological imaging dataset, three categories of lung cancer models are adenocarcinoma, benign and squamous cell carcinoma. Our SCNN achieves an average accuracy of 95.34%, an accuracy of 95.66%, a recall of 95.33%, and an F1 score of over 60 epochs within 1000 seconds. These results go beyond traditional CNN, R-CNN, and custom inception classifiers, indicating superior speed and robustness in histological image classification. Therefore, SCNN offers a practical and scalable solution to improve lung cancer awareness in clinical practice.
Journal Article