Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
316 result(s) for "Khan, Saad M."
Sort by:
Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs
Chromatin modifications, such as cytosine methylation of DNA, play a significant role in mediating gene expression in plants, which affects growth, development, and cell differentiation. As root hairs are single-cell extensions of the root epidermis and the primary organs for water uptake and nutrients, we sought to use root hairs as a single-cell model system to measure the impact of environmental stress. We measured changes in cytosine DNA methylation in single-cell root hairs as compared with multicellular stripped roots, as well as in response to heat stress. Differentially methylated regions (DMRs) in each methylation context showed very distinct methylation patterns between cell types and in response to heat stress. Intriguingly, at normal temperature, root hairs were more hypermethylated than were stripped roots. However, in response to heat stress, both root hairs and stripped roots showed hypomethylation in each context, especially in the CHH context. Moreover, expression analysis of mRNA from similar tissues and treatments identified some associations between DMRs, genes and transposons. Taken together, the data indicate that changes in DNA methylation are directly or indirectly associated with expression of genes and transposons within the context of either specific tissues/cells or stress (heat).
Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response
Background Recent investigations of the meninges have highlighted the importance of the dura layer in central nervous system immune surveillance beyond a purely structural role. However, our understanding of the meninges largely stems from the use of pre-clinical models rather than human samples. Methods Single-cell RNA sequencing of seven non-tumor-associated human dura samples and six primary meningioma tumor samples (4 matched and 2 non-matched) was performed. Cell type identities, gene expression profiles, and T cell receptor expression were analyzed. Copy number variant (CNV) analysis was performed to identify putative tumor cells and analyze intratumoral CNV heterogeneity. Immunohistochemistry and imaging mass cytometry was performed on selected samples to validate protein expression and reveal spatial localization of select protein markers. Results In this study, we use single-cell RNA sequencing to perform the first characterization of both non-tumor-associated human dura and primary meningioma samples. First, we reveal a complex immune microenvironment in human dura that is transcriptionally distinct from that of meningioma. In addition, we characterize a functionally diverse and heterogenous landscape of non-immune cells including endothelial cells and fibroblasts. Through imaging mass cytometry, we highlight the spatial relationship among immune cell types and vasculature in non-tumor-associated dura. Utilizing T cell receptor sequencing, we show significant TCR overlap between matched dura and meningioma samples. Finally, we report copy number variant heterogeneity within our meningioma samples. Conclusions Our comprehensive investigation of both the immune and non-immune cellular landscapes of human dura and meningioma at single-cell resolution builds upon previously published data in murine models and provides new insight into previously uncharacterized roles of human dura.
Single-cell multi-omic analysis of the vestibular schwannoma ecosystem uncovers a nerve injury-like state
Vestibular schwannomas (VS) are benign tumors that lead to significant neurologic and otologic morbidity. How VS heterogeneity and the tumor microenvironment (TME) contribute to VS pathogenesis remains poorly understood. In this study, we perform scRNA-seq on 15 VS, with paired scATAC-seq ( n  = 6) and exome sequencing ( n  = 12). We identify diverse Schwann cell (SC), stromal, and immune populations in the VS TME and find that repair-like and MHC-II antigen-presenting SCs are associated with myeloid cell infiltrate, implicating a nerve injury-like process. Deconvolution analysis of RNA-expression data from 175 tumors reveals Injury-like tumors are associated with larger tumor size, and scATAC-seq identifies transcription factors associated with nerve repair SCs from Injury-like tumors. Ligand-receptor analysis and in vitro experiments suggest that Injury-like VS-SCs recruit myeloid cells via CSF1 signaling. Our study indicates that Injury-like SCs may cause tumor growth via myeloid cell recruitment and identifies molecular pathways that may be therapeutically targeted. Vestibular schwannomas are benign tumours which can lead to neurological symptoms and morbidity. Here, the authors use single cell RNA-seq and ATAC-seq to identify Schwann cell subtypes in the tumour microenvironment which mimic a nerve injury phenotype.
Evaluation of genetic variation among Brazilian soybean cultivars through genome resequencing
Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown. To investigate the genetics of the Brazilian soybean germplasm, we selected soybean cultivars based on the year of commercialization, geographical region and maturity group and resequenced their genomes. We resequenced the genomes of 28 Brazilian soybean cultivars with an average genome coverage of 14.8X. A total of 5,835,185 single nucleotide polymorphisms (SNPs) and 1,329,844 InDels were identified across the 20 soybean chromosomes, with 541,762 SNPs, 98,922 InDels and 1,093 CNVs that were exclusive to the 28 Brazilian cultivars. In addition, 668 allelic variations of 327 genes were shared among all of the Brazilian cultivars, including genes related to DNA-dependent transcription-elongation, photosynthesis, ATP synthesis-coupled electron transport, cellular respiration, and precursors of metabolite generation and energy. A very homogeneous structure was also observed for the Brazilian soybean germplasm, and we observed 41 regions putatively influenced by positive selection. Finally, we detected 3,880 regions with copy-number variations (CNVs) that could help to explain the divergence among the accessions evaluated. The large number of allelic and structural variations identified in this study can be used in marker-assisted selection programs to detect unique SNPs for cultivar fingerprinting. The results presented here suggest that despite the diversification of modern Brazilian cultivars, the soybean germplasm remains very narrow because of the large number of genome regions that exhibit low diversity. These results emphasize the need to introduce new alleles to increase the genetic diversity of the Brazilian germplasm.
Impact of CD4 T cells on intratumoral CD8 T-cell exhaustion and responsiveness to PD-1 blockade therapy in mouse brain tumors
BackgroundGlioblastoma is a fatal disease despite aggressive multimodal therapy. PD-1 blockade, a therapy that reinvigorates hypofunctional exhausted CD8 T cells (Tex) in many malignancies, has not shown efficacy in glioblastoma. Loss of CD4 T cells can lead to an exhausted CD8 T-cell phenotype, and terminally exhausted CD8 T cells (Texterm) do not respond to PD-1 blockade. GL261 and CT2A are complementary orthotopic models of glioblastoma. GL261 has a functional CD4 T-cell compartment and is responsive to PD-1 blockade; notably, CD4 depletion abrogates this survival benefit. CT2A is composed of dysfunctional CD4 T cells and is PD-1 blockade unresponsive. We leverage these models to understand the impact of CD4 T cells on CD8 T-cell exhaustion and PD-1 blockade sensitivity in glioblastoma.MethodsSingle-cell RNA sequencing was performed on flow sorted tumor-infiltrating lymphocytes from female C57/BL6 mice implanted with each model, with and without PD-1 blockade therapy. CD8+ and CD4+ T cells were identified and separately analyzed. Survival analyses were performed comparing PD-1 blockade therapy, CD40 agonist or combinatorial therapy.ResultsThe CD8 T-cell compartment of the models is composed of heterogenous CD8 Tex subsets, including progenitor exhausted CD8 T cells (Texprog), intermediate Tex, proliferating Tex, and Texterm. GL261 is enriched with the PD-1 responsive Texprog subset relative to the CT2A and CD4-depleted GL261 models, which are composed predominantly of the PD-1 blockade refractory Texterm subset. Analysis of the CD4 T-cell compartments revealed that the CT2A microenvironment is enriched with a suppressive Treg subset and an effector CD4 T-cell subset that expresses an inhibitory interferon-stimulated (Isc) signature. Finally, we demonstrate that addition of CD40 agonist to PD-1 blockade therapy improves survival in CT2A tumor-bearing mice.ConclusionsHere, we describe that dysfunctional CD4 T cells are associated with terminal CD8 T-cell exhaustion, suggesting CD4 T cells impact PD-1 blockade efficacy by controlling the severity of exhaustion. Given that CD4 lymphopenia is frequently observed in patients with glioblastoma, this may represent a basis for resistance to PD-1 blockade. We demonstrate that CD40 agonism may circumvent a dysfunctional CD4 compartment to improve PD-1 blockade responsiveness, supporting a novel synergistic immunotherapeutic approach.
Distinctive Left-Sided Distribution of Adrenergic-Derived Cells in the Adult Mouse Heart
Adrenaline and noradrenaline are produced within the heart from neuronal and non-neuronal sources. These adrenergic hormones have profound effects on cardiovascular development and function, yet relatively little information is available about the specific tissue distribution of adrenergic cells within the adult heart. The purpose of the present study was to define the anatomical localization of cells derived from an adrenergic lineage within the adult heart. To accomplish this, we performed genetic fate-mapping experiments where mice with the cre-recombinase (Cre) gene inserted into the phenylethanolamine-n-methyltransferase (Pnmt) locus were cross-mated with homozygous Rosa26 reporter (R26R) mice. Because Pnmt serves as a marker gene for adrenergic cells, offspring from these matings express the β-galactosidase (βGAL) reporter gene in cells of an adrenergic lineage. βGAL expression was found throughout the adult mouse heart, but was predominantly (89%) located in the left atrium (LA) and ventricle (LV) (p<0.001 compared to RA and RV), where many of these cells appeared to have cardiomyocyte-like morphological and structural characteristics. The staining pattern in the LA was diffuse, but the LV free wall displayed intermittent non-random staining that extended from the apex to the base of the heart, including heavy staining of the anterior papillary muscle along its perimeter. Three-dimensional computer-aided reconstruction of XGAL+ staining revealed distribution throughout the LA and LV, with specific finger-like projections apparent near the mid and apical regions of the LV free wall. These data indicate that adrenergic-derived cells display distinctive left-sided distribution patterns in the adult mouse heart.
PGen: large-scale genomic variations analysis workflow and browser in SoyKB
Background With the advances in next-generation sequencing (NGS) technology and significant reductions in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations and to apply the knowledge towards improvements in traits. To efficiently facilitate large-scale NGS resequencing data analysis of genomic variations, we have developed “PGen”, an integrated and optimized workflow using the Extreme Science and Engineering Discovery Environment (XSEDE) high-performance computing (HPC) virtual system, iPlant cloud data storage resources and Pegasus workflow management system (Pegasus-WMS). The workflow allows users to identify single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), perform SNP annotations and conduct copy number variation analyses on multiple resequencing datasets in a user-friendly and seamless way. Results We have developed both a Linux version in GitHub ( https://github.com/pegasus-isi/PGen-GenomicVariations-Workflow ) and a web-based implementation of the PGen workflow integrated within the Soybean Knowledge Base (SoyKB), ( http://soykb.org/Pegasus/index.php ). Using PGen, we identified 10,218,140 single-nucleotide polymorphisms (SNPs) and 1,398,982 indels from analysis of 106 soybean lines sequenced at 15X coverage. 297,245 non-synonymous SNPs and 3330 copy number variation (CNV) regions were identified from this analysis. SNPs identified using PGen from additional soybean resequencing projects adding to 500+ soybean germplasm lines in total have been integrated. These SNPs are being utilized for trait improvement using genotype to phenotype prediction approaches developed in-house. In order to browse and access NGS data easily, we have also developed an NGS resequencing data browser ( http://soykb.org/NGS_Resequence/NGS_index.php ) within SoyKB to provide easy access to SNP and downstream analysis results for soybean researchers. Conclusion PGen workflow has been optimized for the most efficient analysis of soybean data using thorough testing and validation. This research serves as an example of best practices for development of genomics data analysis workflows by integrating remote HPC resources and efficient data management with ease of use for biological users. PGen workflow can also be easily customized for analysis of data in other species.
Effect of lipo-chitooligosaccharide on early growth of C₄ grass seedlings
Although lipo-chitooligosaccharides (LCOs) are important signal molecules for plant-symbiont interactions, a number of reports suggest that LCOs can directly impact plant growth and development, separate from any role in plant symbioses. In order to investigate this more closely, maize and Setaria seedlings were treated with LCO and their growth was evaluated. The data indicate that LCO treatment significantly enhanced root growth. RNA-seq transcriptomic analysis of LCO-treated maize roots identified a number of genes whose expression was significantly affected by the treatment. Among these genes, some LCO-up-regulated genes are likely involved in root growth promotion. Interestingly, some stress-related genes were down-regulated after LCO treatment, which might indicate reallocation of resources from defense responses to plant growth. The promoter activity of several LCO-up-regulated genes using a β-glucuronidase reporter system was further analysed. The results showed that the promoters were activated by LCO treatment. The data indicate that LCO can directly impact maize root growth and gene expression.
Citric Acid Future Prospects for Pakistan, a Short Review
Considered weak organic acid, Citric Acid (CA) finds its application in almost all the food and pharmaceutical industries as flavour, acidifier and chelating agent. CA has been found in abundance specially in citrus fruits, can also be produced by artificial means, most notably by fermentation using molasses or starch by the use of micro-organisms. The current paper outlines the production of CA from Aspergillus Niger (A. Niger) keeping in view the statistical analysis that shows its importance, usage and future scope of CA if manufactured at industrial scale in Pakistan. Key words: Aspergillus Niger, Citric Acid, Fermentation, Molasses.
Genotypic variation of gene expression during the soybean innate immunity response
Microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. Although several MTI responses can be measured in different plant species, their magnitude is probably plant species specific and even cultivar specific. In this study, a genome-wide transcriptome analysis of two soybean parental lines and two progeny lines treated for 30 min with the MAMPs flg22 and chitin was carried out. This analysis revealed a clear variation in gene expression, under both untreated and flg22+chitin-treated conditions. In addition, genes with potential additive and non-additive effects were identified in the two progeny lines, with several of these genes having a potential function in the control of innate immunity. The data presented herein represent the basis for further functional analysis that can lead to a better understanding of the soybean innate immunity response.