Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Publisher
    • Source
    • Donor
    • Place of Publication
    • Contributors
    • Location
1 result(s) for "Khandelwal, Shekhar, author"
Sort by:
Phishing detection using content based image classification
\"Phishing Detection using content-based image classification is an invaluable resource for any deep learning and cybersecurity professional and scholar trying to solve various cybersecurity tasks using new age technologies like Deep Learning and Computer Vision. With various rule-based phishing detection techniques at play which can be bypassed by phishers, this book provides a step-by-step approach to solve this problem using Computer Vision and Deep Learning techniques with significant accuracy. The book offers comprehensive coverage of the most essential topics, including: Programmatically reading and manipulating image data; Extracting relevant features from images; Building statistical models using image features; Using state of the art Deep Learning models for feature extraction; Build a robust phishing detection tool even with less data; Dimensionality reduction techniques; Class imbalance treatment; Feature Fusion techniques; Building performance metrics for multi-class classification task. Another unique aspect of this book is it comes with a completely reproducible code base developed by the author and shared via python notebooks for quick launch and running capabilities. They can be leveraged for further enhancing the provided models using new advancement in the field of computer vision and more advanced algorithms\"-- Provided by publisher.