Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Khayyat, Maha"
Sort by:
Crystalline Silicon Spalling as a Direct Application of Temperature Effect on Semiconductors’ Indentation
Kerf-less removal of surface layers of photovoltaic materials including silicon is an emerging technology by controlled spalling technology. The method is extremely simple, versatile, and applicable to a wide range of substrates. Controlled spalling technology requires a stressor layer, such as Ni, to be deposited on the surface of a brittle material; then, the controlled removal of a continuous surface layer can be performed at a predetermined depth by manipulating the thickness and stress of the Ni layer, introducing a crack near the edge of the substrate, and mechanically guiding the crack as a single fracture front across the surface. However, spalling Si(100) at 300 K (room temperature RT) introduced many cracks and rough regions within the spalled layer. These mechanical issues make it difficult to process these layers of Si(100) for PV, and in other advanced applications, Si does not undergo phase transformations at 77 K (Liquid Nitrogen Temperature, LNT); based on this fact, spalling of Si(100) has been carried out. Spalling of Si(100) at LNT improved material quality for further designed applications. Mechanical flexibility is achieved by employing controlled spalling technology, enabling the large-area transfer of ultrathin body silicon devices to a plastic substrate at room temperature.
Silica Microspheres for Economical Advanced Solar Applications
Solar cells made of silicon nanowires (Si-NWs) have several potential benefits over conventional bulk Si ones or thin-film devices related primarily to light absorption and cost reduction. Controlling the position of Si-NWs without lithography using silica microspheres is indeed an economical approach. Moreover, replacing the glass sheets with polycarbonates is an added advantage. This study employed the Nanoscale Chemical Templating (NCT) technique in growing Si-NWs seeded with Al. The growth was undertaken at the Chemical Vapor Deposition (CVD) reactor via the original growth process of vapor–liquid–solid (VLS). The bottom-up grown nanowires were doped with aluminum (Al) throughout the growth process, and then the p–n junctions were formed with descent efficiency. Further work is required to optimize the growth of Si-NWs between the spun microspheres based on the growth parameters including etching time, which should lead to more efficient PV cells.
Paraffin Wax As a Phase Changing Material (PCM) Based Composites Containing Multi-Walled Carbon Nanotubes for Thermal Energy Storage (TES) Development
Thermal energy storage (TES) technologies are considered as enabling and supporting technologies for more sustainable and reliable energy generation methods such as solar thermal and concentrated solar power. A thorough investigation of the TES system using paraffin wax (PW) as a phase changing material (PCM) should be considered. One of the possible approaches for improving the overall performance of the TES system is to enhance the thermal properties of the energy storage materials of PW. The current study investigated some of the properties of PW doped with nano-additives, namely, multi-walled carbon nanotubes (MWCNs), forming a nanocomposite PCM. The paraffin/MWCNT composite PCMs were tailor-made for enhanced and efficient TES applications. The thermal storage efficiency of the current TES bed system was approximately 71%, which is significant. Scanning electron spectroscopy (SEM) with energy dispersive X-ray (EDX) characterization showed the physical incorporation of MWCNTs with PW, which was achieved by strong interfaces without microcracks. In addition, the FTIR (Fourier transform infrared) and TGA (thermogravimetric analysis) experimental results of this composite PCM showed good chemical compatibility and thermal stability. This was elucidated based on the observed similar thermal mass loss profiles as well as the identical chemical bond peaks for all of the tested samples (PW, CNT, and PW/CNT composites).
Effect of Storage Time and Floral Origin on the Physicochemical Properties of Beeswax and the Possibility of Using It as a Phase Changing Material in the Thermal Storage Energy Technology
Beeswax is a natural product that is primarily produced by honey bees of the genus Apis. It has many uses in various kinds of industries, including pharmacy and medicine. This study investigated the effect of storage and floral origin on some physicochemical properties of four beeswax samples. The floral origin of the beeswax samples was determined microscopically and the investigated physical properties were the melting point, color, surface characteristics and thermal behavior. The studied chemical constituents were the acid value, ester value, saponification value and the ester/acid ratio. The FT-IR, SEM, EDX, XRD and TGF techniques were applied to meet the objectives of this study. The physical properties of the beeswax were affected by the storage period and floral origin. The melting point of the beeswax samples significantly increased with the increase in the storage time, from 61.5 ± 2.12 °C for the 3 month sample to 74.5 ± 3.54 °C for the 2 year stored sample (p-value = 0.027). The acid values of the 3 month, 6 month, 1 year and 2 years stored samples were 19.57 ± 0.95, 22.95 ± 1.91, 27 ± 1.91 and 34.42 ± 0.95 mgKOH/g, respectively. The increase in the acid value was significant (p-value = 0.002). The ester values of the studied beeswax samples significantly increased with the increase in storage time as follows: 46.57 ± 2.86 mgKOH/g for the 3 month stored sample, 66.14 ± 3.82 mgKOH/g for the 6 month stored sample, 89.77 ± 0.95 mgKOH/g for the one year stored sample and 97.19 ± 1.91 mgKOH/g for the 2 year stored sample (p-value ≤ 0.001). Similarly, the saponification value and the carbon percentages increased with the increase in storage time. Unlike the results of the chemical components, the oxygen percentage decreased with the increase in storage time as follows: 11.24% (3 month), 10.31% (6 month), 7.97% (one year) and 6.74% (two year). The storage and floral origin of beeswax significantly affected its physicochemical properties in a way that qualify it to act as a phase changing material in the thermal storage energy technology.
Morphological: Optical, and Mechanical Characterizations of Non-Activated and Activated Nanocomposites of SG and MWCNTs
Nanocomposites of silica gel (SG) and multiwalled carbon nanotubes (MWCNTs) of relatively low concentrations (0.25, 0.50, and 0.75 wt%) were characterized before and after annealing. Adsorption is a surface phenomenon, and based on this, the morphology of the composites was investigated by scanning electron microscopy (SEM). The produced images show that the MWCNTs were embedded into the silica gel base material. Fourier transform infrared (FTIR) transmittance spectroscopy showed that MWCNTs were not functionalized within the matrix of silica gel and MWCNT composites. However, after annealing the composites at 400 °C for 4 h in air, evidence of activation was observed in the FTIR spectrum. The effects of the embedding of MWCNTs on porosity, specific surface area, and pore size distribution were studied using Raman spectroscopy. The Raman spectra of the prepared composites were mainly dominated by characteristic sharp scattering peaks of the silica gel at 480, 780, and 990 cm−1 and a broad band centered at 2100 cm−1. The scattering peaks of MWCNTs were not well pronounced, as the homogeneity of the composite is always questionable. Nanosizer analysis showed that at 0.25 wt%, the distribution of MWCNTs within the silica gel was optimal. Vickers hardness measurements showed that the hardness increased with the increasing weight percent of MWCNTs within the composite matrix, while annealing enhanced the mechanical properties of the composites. Further studies are required to investigate the pore structure of silica gel within the matrix of MWCNTs to be deployed for efficient cooling and water purification applications.
Performance of Nanocomposites of a Phase Change Material Formed by the Dispersion of MWCNT/TiO2 for Thermal Energy Storage Applications
Thermal energy storage technology is an important topic, as it enables renewable energy technology to be available 24/7 and under different weather conditions. Phase changing materials (PCM) are key players in thermal energy storage, being the most economic among those available with adjustable thermal properties. Paraffin wax (PW) is one of the best materials used in industrial processes to enhance thermal storage. However, the low thermal conductivity of PW prevents its thermal application. In this study, we successfully modified PW based on multi-walled carbon nanotubes (MWCNT) with different concentrations of TiO2—3, 5 and 7 wt.%. The morphology of PCM and its relationship with the chemical structure and stability were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and Thermogravimetric analysis (TGA). As a result, the composites achieved a highest latent heat enthalpy of 176 J/g, in addition to enhanced thermal stability after 15 thermal cycles, and reliability, with a slight change in latent heat observed when using a differential scanning calorimeter (DSC). The thermal conductivity of the composites could significantly be enhanced by 100%. Compared to pure paraffin, the PCM composites developed in this study exhibited an excellent preference for thermal energy storage and possessed low cost, high reliability, and phase change properties.
Performance of Nanocomposites of a Phase Change Material Formed by the Dispersion of MWCNT/TiO 2 for Thermal Energy Storage Applications
Thermal energy storage technology is an important topic, as it enables renewable energy technology to be available 24/7 and under different weather conditions. Phase changing materials (PCM) are key players in thermal energy storage, being the most economic among those available with adjustable thermal properties. Paraffin wax (PW) is one of the best materials used in industrial processes to enhance thermal storage. However, the low thermal conductivity of PW prevents its thermal application. In this study, we successfully modified PW based on multi-walled carbon nanotubes (MWCNT) with different concentrations of TiO -3, 5 and 7 wt.%. The morphology of PCM and its relationship with the chemical structure and stability were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and Thermogravimetric analysis (TGA). As a result, the composites achieved a highest latent heat enthalpy of 176 J/g, in addition to enhanced thermal stability after 15 thermal cycles, and reliability, with a slight change in latent heat observed when using a differential scanning calorimeter (DSC). The thermal conductivity of the composites could significantly be enhanced by 100%. Compared to pure paraffin, the PCM composites developed in this study exhibited an excellent preference for thermal energy storage and possessed low cost, high reliability, and phase change properties.
IoT based smart home automation using blockchain and deep learning models
For the past few years, the concept of the smart house has gained popularity. The major challenges concerning a smart home include data security, privacy issues, authentication, secure identification, and automated decision-making of Internet of Things (IoT) devices. Currently, existing home automation systems address either of these challenges, however, home automation that also involves automated decision-making systems and systematic features apart from being reliable and safe is an absolute necessity. The current study proposes a deep learning-driven smart home system that integrates a Convolutional neural network (CNN) for automated decision-making such as classifying the device as “ON” and “OFF” based on its utilization at home. Additionally, to provide a decentralized, secure, and reliable mechanism to assure the authentication and identification of the IoT devices we integrated the emerging blockchain technology into this study. The proposed system is fundamentally comprised of a variety of sensors, a 5 V relay circuit, and Raspberry Pi which operates as a server and maintains the database of each device being used. Moreover, an android application is developed which communicates with the Raspberry Pi interface using the Apache server and HTTP web interface. The practicality of the proposed system for home automation is tested and evaluated in the lab and in real-time to ensure its efficacy. The current study also assures that the technology and hardware utilized in the proposed smart house system are inexpensive, widely available, and scalable. Furthermore, the need for a more comprehensive security and privacy model to be incorporated into the design phase of smart homes is highlighted by a discussion of the risks analysis’ implications including cyber threats, hardware security, and cyber attacks. The experimental results emphasize the significance of the proposed system and validate its usability in the real world.
The Impact of Non-Compliance to a Standardized Risk-Adjusted Protocol on Recurrence, Progression, and Mortality in Non-Muscle Invasive Bladder Cancer
Non-muscle invasive bladder cancer (NMIBC) is a potentially curable or controllable disease if strict adherence to a surveillance protocol is followed. Management and surveillance of NMIBC begins at the time of diagnosis up to a few years thereafter. There is scanty data in the literature evaluating the impact of non-compliance with the surveillance protocols on progression, recurrence, and mortality rate. An observational, retrospective cohort study recruited data between 2012 and 2017 at two tertiary hospitals. Data were collected consecutively. NMIBC patients who had at least 3 years of follow-up data were included. Patients were divided into different groups based on their compliance with the cystoscopy follow-up protocol as recommended by the European guidelines. We compared the cystoscopy compliant group with the non-compliant group in view of recurrence, progression, and mortality. In addition, missing variable items during surveillance were calculated using a new scoring model to predict adverse outcomes. Eighty-eight NMIBC patients met our criteria. Recurrence rate (RR), progression rate (PR), metastasis rate (MsR), and mortality rate (MR) are significantly higher in non-compliant group, RR: (92.6%) ( <0.001), PR: (54.1%) ( <0.001), MsR: (37.7%) ( <0.001), MR: (23.5%) ( = 0.002) respectively. In the subgroup analysis, intermediate and high-risk groups have a PR rate of zero in the compliant group, while it is 100% ( <0.001) and 56.4% ( =0.001) in the non-compliant group, respectively. Use of a Kaplan Meier (KM) graph shows that compliant patients had a better survival in comparison to non-compliant patients. Scoring there or more is statistically and clinically significantly associated with higher recurrence, progression, and mortality. RR: (94%) ( =0.016), PR: 49% ( <0.001) and MR (26%) ( =0.012). Non-compliance to a standardized surveillance protocol in NMIBC is associated statistically and clinically with adverse outcomes in comparison to a compliant group. This mandates strict adherence to surveillance guidelines particularly in patients with high-risk disease.