Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Khvorov, Arseniy"
Sort by:
Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination
Annual epidemics of seasonal influenza cause hundreds of thousands of deaths, high levels of morbidity, and substantial economic loss. Yet, global influenza circulation has been heavily suppressed by public health measures and travel restrictions since the onset of the COVID-19 pandemic. Notably, the influenza B/Yamagata lineage has not been conclusively detected since April 2020, and A(H3N2), A(H1N1), and B/Victoria viruses have since circulated with considerably less genetic diversity. Travel restrictions have largely confined regional outbreaks of A(H3N2) to South and Southeast Asia, B/Victoria to China, and A(H1N1) to West Africa. Seasonal influenza transmission lineages continue to perish globally, except in these select hotspots, which will likely seed future epidemics. Waning population immunity and sporadic case detection will further challenge influenza vaccine strain selection and epidemic control. We offer a perspective on the potential short- and long-term evolutionary dynamics of seasonal influenza and discuss potential consequences and mitigation strategies as global travel gradually returns to pre-pandemic levels. COVID-19 control measures have suppressed circulation of other infections including influenza. Here, the authors analyse WHO global influenza sequence and case report data and describe changes in the phylogenetic and geographic distribution of influenza lineages during the COVID-19 pandemic.
Influenza virus infection history shapes antibody responses to influenza vaccination
Studies of successive vaccination suggest that immunological memory against past influenza viruses may limit responses to vaccines containing current strains. The impact of memory induced by prior infection is rarely considered and is difficult to ascertain, because infections are often subclinical. This study investigated influenza vaccination among adults from the Ha Nam cohort (Vietnam), who were purposefully selected to include 72 with and 28 without documented influenza A(H3N2) infection during the preceding 9 years (Australian New Zealand Clinical Trials Registry 12621000110886). The primary outcome was the effect of prior influenza A(H3N2) infection on hemagglutinin-inhibiting antibody responses induced by a locally available influenza vaccine administered in November 2016. Baseline and postvaccination sera were titrated against 40 influenza A(H3N2) strains spanning 1968–2018. At each time point (baseline, day 14 and day 280), geometric mean antibody titers against 2008–2018 strains were higher among participants with recent infection (34 (29–40), 187 (154–227) and 86 (72–103)) than among participants without recent infection (19 (17–22), 91 (64–130) and 38 (30–49)). On days 14 and 280, mean titer rises against 2014–2018 strains were 6.1-fold (5.0- to 7.4-fold) and 2.6-fold (2.2- to 3.1-fold) for participants with recent infection versus 4.8-fold (3.5- to 6.7-fold) and 1.9-fold (1.5- to 2.3-fold) for those without. One of 72 vaccinees with recent infection versus 4 of 28 without developed symptomatic A(H3N2) infection in the season after vaccination ( P  = 0.021). The range of A(H3N2) viruses recognized by vaccine-induced antibodies was associated with the prior infection strain. These results suggest that recall of immunological memory induced by prior infection enhances antibody responses to inactivated influenza vaccine and is important to attain protective antibody titers. Recent prior influenza A infection is associated with elevated hemagglutinin-inhibiting antibody responses and greater breadth of reactivity to influenza strains following vaccination, suggesting that infection history boosts vaccine responses.
Opposing Effects of Prior Infection versus Prior Vaccination on Vaccine Immunogenicity against Influenza A(H3N2) Viruses
Prior vaccination can alternately enhance or attenuate influenza vaccine immunogenicity and effectiveness. Analogously, we found that vaccine immunogenicity was enhanced by prior A(H3N2) virus infection among participants of the Ha Nam Cohort, Viet Nam, but was attenuated by prior vaccination among Australian Health Care Workers (HCWs) vaccinated in the same year. Here, we combined these studies to directly compare antibody titers against 35 A(H3N2) viruses spanning 1968–2018. Participants received licensed inactivated vaccines containing A/HongKong/4801/2014 (H3N2). The analysis was limited to participants aged 18–65 Y, and compared those exposed to A(H3N2) viruses circulating since 2009 by infection (Ha Nam) or vaccination (HCWs) to a reference group who had no recent A(H3N2) infection or vaccination (Ha Nam). Antibody responses were compared by fitting titer/titer-rise landscapes across strains, and by estimating titer ratios to the reference group of 2009–2018 viruses. Pre-vaccination, titers were lowest against 2009–2014 viruses among the reference (no recent exposure) group. Post-vaccination, titers were, on average, two-fold higher among participants with prior infection and two-fold lower among participants with 3–5 prior vaccinations compared to the reference group. Titer rise was negligible among participants with 3–5 prior vaccinations, poor among participants with 1–2 prior vaccinations, and equivalent or better among those with prior infection compared to the reference group. The enhancing effect of prior infection versus the incrementally attenuating effect of prior vaccinations suggests that these exposures may alternately promote and constrain the generation of memory that can be recalled by a new vaccine strain.
The need for a clinical case definition in test-negative design studies estimating vaccine effectiveness
Test negative studies have been used extensively for the estimation of COVID-19 vaccine effectiveness (VE). Such studies are able to estimate VE against medically-attended illness under certain assumptions. Selection bias may be present if the probability of participation is associated with vaccination or COVID-19, but this can be mitigated through use of a clinical case definition to screen patients for eligibility, which increases the likelihood that cases and non-cases come from the same source population. We examined the extent to which this type of bias could harm COVID-19 VE through systematic review and simulation. A systematic review of test-negative studies was re-analysed to identify studies ignoring the need for clinical criteria. Studies using a clinical case definition had a lower pooled VE estimate compared with studies that did not. Simulations varied the probability of selection by case and vaccination status. Positive bias away from the null (i.e., inflated VE consistent with the systematic review) was observed when there was a higher proportion of healthy, vaccinated non-cases, which may occur if a dataset contains many results from asymptomatic screening in settings where vaccination coverage is high. We provide an html tool for researchers to explore site-specific sources of selection bias in their own studies. We recommend all groups consider the potential for selection bias in their vaccine effectiveness studies, particularly when using administrative data.
Antibody responses against influenza A decline with successive years of annual influenza vaccination
Influenza vaccine effectiveness and immunogenicity can be compromised with repeated vaccination. We assessed immunological markers in a cohort of healthcare workers (HCW) from six public hospitals around Australia during 2020–2021. Sera were collected pre-vaccination and ~14 and ~180 days post-vaccination and assessed in haemagglutination inhibition assay against egg-grown vaccine and equivalent cell-grown viruses. Responses to vaccination were compared by the number of prior vaccinations. Baseline sera were available for 595 HCW in 2020 and 1031 in 2021. 5% had not been vaccinated during five years prior to enrolment and 55% had been vaccinated every year. Post-vaccination titres for all vaccine antigens were lowest among HCW vaccinated in all 5-prior years and highest among HCW with 0 or 1 prior vaccinations, even after adjustment. This was observed for both influenza A subtypes and was dependent on pre-vaccination titre. Expanded cohorts are needed to better understand how this translates to vaccine effectiveness.
Hospitalizations and emergency attendance averted by influenza vaccination in Victoria, Australia, 2017 – 2019
Seasonal influenza epidemics result in high levels of healthcare utilization. Vaccination is an effective strategy to reduce the influenza-related burden of disease. However, reporting vaccine effectiveness does not convey the population impacts of influenza vaccination. We aimed to calculate the burden of influenza-related hospitalizations and emergency department (ED) attendance averted by influenza vaccination in Victoria, Australia, from 2017 to 2019, and associated economic savings. We applied a compartmental model to hospitalizations and ED attendances with influenza-specific, and pneumonia and influenza (P&I) with the International Classification of Diseases, 10th Revision, Australian Modification (ICD-10-AM) diagnostic codes of J09-J11 and J09-J18, respectively. We estimated an annual average of 7657 (120 per 100000 population) hospitalizations and 20560 (322 per 100000 population) ED attendances over the study period, associated with A$85 million hospital expenditure. We estimated that influenza vaccination averted an annual average of 1182 [range: 556 – 2277] hospitalizations and 3286 [range: 1554 – 6257] ED attendances and reduced the demand for healthcare services at the influenza season peak. This equated to approximately A13 [range: A6 – A25] million of savings over the study period. Calculating the burden averted is feasible in Australia and auseful approach to demonstrate the health and economic benefits of influenza vaccination.
Superior immunogenicity of mRNA over adenoviral vectored COVID-19 vaccines reflects B cell dynamics independent of anti-vector immunity: Implications for future pandemic vaccines
•vaccine induced higher Surrogate neutralizing antibody and RBD-targeted B cell responses were greater after mRNA compared to vector vaccine.•Although vector vaccine boosted antibodies against human Adenovirus, those titres did not correlate with anti-spike titres.•Further work is needed to improve the immunogenicity of vector vaccines as they remain an important option for pandemic and outbreak responses. Both vector and mRNA vaccines were an important part of the response to the COVID-19 pandemic and may be required in future outbreaks and pandemics. The aim of this study was to validate whether immunogenicity differs for adenoviral vectored (AdV) versus mRNA vaccines against SARS-CoV-2, and to investigate how anti-vector immunity and B cell dynamics modulate immunogenicity. We enrolled SARS-CoV-2 infection-naïve health care workers who had received two doses of either AdV AZD1222 (n = 184) or mRNA BNT162b2 vaccine (n = 274) between April and October 2021. Blood was collected at least once, 10–48 days after vaccine dose 2 for antibody and B cell analyses. Median ages were 42 and 39 years, for AdV and mRNA vaccinees, respectively. Surrogate virus neutralization test (sVNT) and spike binding antibody titres were a median of 4.2 and 2.2 times lower, respectively, for AdV compared to mRNA vaccinees (p < 0.001). Median percentages of memory B cells that recognized fluorescent-tagged spike and RBD were 2.9 and 8.3 times lower, respectively for AdV compared to mRNA vaccinees. Titres of IgG reactive with human adenovirus type 5 hexon protein rose a median of 2.2-fold after AdV vaccination but were not correlated with anti-spike antibody titres. Together the results show that mRNA induced substantially more sVNT antibody than AdV vaccine, which reflected greater B cell expansion and targeting of the RBD rather than an attenuating effect of anti-vector antibodies. ClinicalTrials.gov Identifier: NCT05110911.
Evaluation of 6 Commercial SARS-CoV-2 Serology Assays Detecting Different Antibodies for Clinical Testing and Serosurveillance
Abstract Background Serological testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) complements nucleic acid tests for patient diagnosis and enables monitoring of population susceptibility to inform the coronavirus disease 2019 (COVID-19) pandemic response. It is important to understand the reliability of assays with different antigen or antibody targets to detect humoral immunity after SARS-CoV-2 infection and to understand how antibody (Ab) binding assays compare to those detecting neutralizing antibody (nAb), particularly as we move into the era of vaccines. Methods We evaluated the performance of 6 commercially available enzyme-linked immunosorbent assays (ELISAs), including a surrogate virus neutralization test (sVNT), for detection of SARS-CoV-2 immunoglobulins (IgA, IgM, IgG), total or nAb. A result subset was compared with a cell culture–based microneutralization (MN) assay. We tested sera from patients with prior reverse transcription polymerase chain reaction–confirmed SARS-CoV-2 infection, prepandemic sera, and potential cross-reactive sera from patients with other non-COVID-19 acute infections. Results For sera collected >14 days post–symptom onset, the assay achieving the highest sensitivity was the Wantai total Ab at 100% (95% CI, 94.6%–100%), followed by 93.1% for Euroimmun NCP-IgG, 93.1% for GenScript sVNT, 90.3% for Euroimmun S1-IgG, 88.9% for Euroimmun S1-IgA, and 83.3% for Wantai IgM. Specificity for the best-performing assay was 99.5% for the Wantai total Ab, and for the lowest-performing assay it was 97.1% for sVNT (as per the Instructions for Use [IFU]). The Wantai Total Ab had the best agreement with MN at 98% followed by Euroimmun S1-IgA, Euro NCP-IgG, and sVNT (as per IFU) with 97%, 97% and 95%, respectively; Wantai IgM had the poorest agreement at 93%. Conclusions Performance characteristics of the SARS-CoV-2 serology assays detecting different antibody types are consistent with those found in previously published reports. Evaluation of the surrogate virus neutralization test in comparison to the Ab binding assays and a cell culture–based neutralization assay showed good result correlation between all assays. However, correlation between the cell-based neutralization test and some assays detecting Ab’s not specifically involved in neutralization was higher than with the sVNT. This study demonstrates the reliability of different assays to detect the humoral immune response following SARS-CoV-2 infection, which can be used to optimize serological test algorithms for assessing antibody responses post–SARS-CoV-2 infection or vaccination.