Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Kijak, Gustavo H."
Sort by:
High Affinity Allele for the Gene of FCGR3A Is Risk Factor for HIV Infection and Progression
We investigated the genetics of Fc receptors, which function as activating receptors on immune cells and help to control HIV through antibody-mediated cellular cytotoxicity. Thus, Fc receptors may be important for virus immunity but might also promote immune hyperactivation that would enhance infection. We measured abundance of low and high activity alleles in two Fc receptor genes, FCGR2A and FCGR3A, for persons with HIV disease, natural virus suppressors (HIV+, without disease) and healthy controls to show whether genotypes were associated with infection and disease. Individuals homozygous for the high activity allele of FCGR3A (158VV) were predominantly found among HIV progressors and this group was also skewed toward higher allele frequencies for the V158 variant. Both of the HIV positive groups (progressors and natural virus suppressors) had significantly higher frequencies of the V158 allele compared with uninfected controls. There were no apparent associations among FCGR2A alleles and HIV status. Our results indicate that high activity alleles of FCGR3A may be risk factors for HIV infection or progression and we need to understand how allelic variants affect the balance between virus control and immune activation.
HIV-1 genetic diversity and demographic characteristics in Bulgaria
HIV-1 strain diversity in Bulgaria is extensive and includes contributions from nearly all major subtypes and the Circulating Recombinant Forms (CRF): 01_AE, 02_AG, and 05_DF. Prior to this study, HIV-1 sequence information from Bulgaria has been based solely on the pro-RT gene, which represent less than 15% of the viral genome. To further characterize HIV-1 in Bulgaria, assess participant risk behaviors, and strengthen knowledge of circulating strains in the region, the study \"Genetic Subtypes of HIV-1 in Bulgaria (RV240)\" was conducted. This study employed the real time-PCR based Multi-region Hybridization Assay (MHA) B/non-B and HIV-1 sequencing to survey 215 of the approximately 1100 known HIV-1 infected Bulgarian adults (2008-2009) and determine if they were infected with subtype B HIV-1. The results indicated a subtype B prevalence of 40% and demonstrate the application of the MHA B/non-B in an area containing broad HIV-1 strain diversity. Within the assessed risk behaviors, the proportion of subtype B infection was greatest in men who have sex with men and lowest among those with drug use risk factors. During this study, 15 near full-length genomes and 22 envelope sequences were isolated from study participants. Phylogenetic analysis shows the presence of subtypes A1, B, C, F1, and G, CRF01_AE, CRF02_AG, CRF05_DF, and one unique recombinant form (URF). These sequences also show the presence of two strain groups containing participants with similar risk factors. Previous studies in African and Asian cohorts have shown that co-circulation of multiple subtypes can lead to viral recombination within super-infected individuals and the emergence of new URFs. The low prevalence of URFs in the presence of high subtype diversity in this study, may be the result of successful infection prevention and control programs. Continued epidemiological monitoring and support of infection prevention programs will help maintain control of the HIV-1 epidemic in Bulgaria.
Analysis of SARS-CoV-2 Emergent Variants Following AZD7442 (Tixagevimab/Cilgavimab) for Early Outpatient Treatment of COVID-19 (TACKLE Trial)
Introduction AZD7442 (tixagevimab/cilgavimab) comprises neutralising monoclonal antibodies (mAbs) that bind to distinct non-overlapping epitopes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Viral evolution during mAb therapy can select for variants with reduced neutralisation susceptibility. We examined treatment-emergent SARS-CoV-2 variants during TACKLE (NCT04723394), a phase 3 study of AZD7442 for early outpatient treatment of coronavirus disease 2019 (COVID-19). Methods Non-hospitalised adults with mild-to-moderate COVID-19 were randomised and dosed ≤ 7 days from symptom onset with AZD7442 ( n  = 452) or placebo ( n  = 451). Next-generation sequencing of the spike gene was performed on SARS-CoV-2 reverse-transcription polymerase chain reaction-positive nasopharyngeal swabs at baseline and study days 3, 6, and 15 post dosing. SARS-CoV-2 lineages were assigned using spike nucleotide sequences. Amino acid substitutions were analysed at allele fractions (AF; % of sequence reads represented by substitution) ≥ 25% and 3% to 25%. In vitro susceptibility to tixagevimab, cilgavimab, and AZD7442 was evaluated for all identified treatment-emergent variants using a pseudotyped microneutralisation assay. Results Longitudinal spike sequences were available for 461 participants (AZD7442, n  = 235; placebo, n  = 226) and showed that treatment-emergent variants at any time were rare, with 5 (2.1%) AZD7442 participants presenting ≥ 1 substitution in tixagevimab/cilgavimab binding sites at AF ≥ 25%. At AF 3% to 25%, treatment-emergent variants were observed in 15 (6.4%) AZD7442 and 12 (5.3%) placebo participants. All treatment-emergent variants showed in vitro susceptibility to AZD7442. Conclusion These data indicate that AZD7442 creates a high genetic barrier for resistance and is a feasible option for COVID-19 treatment.
Characteristics of HIV-infected U.S. Army soldiers linked in molecular transmission clusters, 2001-2012
Recent surveillance data suggests the United States (U.S.) Army HIV epidemic is concentrated among men who have sex with men. To identify potential targets for HIV prevention strategies, the relationship between demographic and clinical factors and membership within transmission clusters based on baseline pol sequences of HIV-infected Soldiers from 2001 through 2012 were analyzed. We conducted a retrospective analysis of baseline partial pol sequences, demographic and clinical characteristics available for all Soldiers in active service and newly-diagnosed with HIV-1 infection from January 1, 2001 through December 31, 2012. HIV-1 subtype designations and transmission clusters were identified from phylogenetic analysis of sequences. Univariate and multivariate logistic regression models were used to evaluate and adjust for the association between characteristics and cluster membership. Among 518 of 995 HIV-infected Soldiers with available partial pol sequences, 29% were members of a transmission cluster. Assignment to a southern U.S. region at diagnosis and year of diagnosis were independently associated with cluster membership after adjustment for other significant characteristics (p<0.10) of age, race, year of diagnosis, region of duty assignment, sexually transmitted infections, last negative HIV test, antiretroviral therapy, and transmitted drug resistance. Subtyping of the pol fragment indicated HIV-1 subtype B infection predominated (94%) among HIV-infected Soldiers. These findings identify areas to explore as HIV prevention targets in the U.S. Army. An increased frequency of current force testing may be justified, especially among Soldiers assigned to duty in installations with high local HIV prevalence such as southern U.S. states.
The Number and Complexity of Pure and Recombinant HIV-1 Strains Observed within Incident Infections during the HIV and Malaria Cohort Study Conducted in Kericho, Kenya, from 2003 to 2006
Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is critical for vaccine development and testing. This study describes the molecular epidemiology of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three incident infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome characterized and compared to two previous Kenyan studies describing 41 prevalent infections from a blood bank survey (1999-2000) and 21 infections from a higher-risk cohort containing a mix of incident and prevalent infections (2006). Among the 58 strains from the community cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G) and 56.9% were inter-subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD, and 3.4% A2D). This diversity and the resulting genetic distance between the observed strains will need to be addressed when vaccine immunogens are chosen. In consideration of current vaccine development efforts, the strains from these three studies were compared to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding to parts of gag, pol, and envelope), which have been developed for possible use in sub-Saharan Africa. The sequence comparison between the observed strains and the candidate vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of the bivalent vaccine are not subtype-matched to the local epidemic.
Class I HLA-A7401 Is Associated with Protection from HIV-1 Acquisition and Disease Progression in Mbeya, Tanzania
Here we explore associations between HLA variation and human immunodeficiency virus type 1 (HIV-1) acquisition and disease progression in a community cohort in Mbeya, Tanzania, a region that, despite harboring high rates of HIV- 1 infection, remains understudied. African-specific allele HLA-A*74:01 was associated with decreased risk of infection (odds ratio [OR], 0.37; 95% confidence interval [CI], 0.14–0.80; P = .011) and with protection from CD4+ cell counts <200 cells/uL in women (OR, 0.31; 95% CI, 0.07–0.91; P = .032) and men (OR, 0.15; 95%CI, 0.01–0.78; P = .020). These associations remained significant after adjustment for linkage disequilibrium with HLA-B and HLA-C alleles. This observation calls for additional investigation of mechanisms by which HLA-A*74:01 may influence HIV-1 acquisition and control of the infection.
High-Throughput High-Resolution Class I HLA Genotyping in East Africa
HLA, the most genetically diverse loci in the human genome, play a crucial role in host-pathogen interaction by mediating innate and adaptive cellular immune responses. A vast number of infectious diseases affect East Africa, including HIV/AIDS, malaria, and tuberculosis, but the HLA genetic diversity in this region remains incompletely described. This is a major obstacle for the design and evaluation of preventive vaccines. Available HLA typing techniques, that provide the 4-digit level resolution needed to interpret immune responses, lack sufficient throughput for large immunoepidemiological studies. Here we present a novel HLA typing assay bridging the gap between high resolution and high throughput. The assay is based on real-time PCR using sequence-specific primers (SSP) and can genotype carriers of the 49 most common East African class I HLA-A, -B, and -C alleles, at the 4-digit level. Using a validation panel of 175 samples from Kampala, Uganda, previously defined by sequence-based typing, the new assay performed with 100% sensitivity and specificity. The assay was also implemented to define the HLA genetic complexity of a previously uncharacterized Tanzanian population, demonstrating its inclusion in the major East African genetic cluster. The availability of genotyping tools with this capacity will be extremely useful in the identification of correlates of immune protection and the evaluation of candidate vaccine efficacy.
Antibody to HSV gD peptide induced by vaccination does not protect against HSV-2 infection in HSV-2 seronegative women
In the HIV-1 vaccine trial RV144, ALVAC-HIV prime with an AIDSVAX® B/E boost reduced HIV-1 acquisition by 31% at 42 months post first vaccination. The bivalent AIDSVAX® B/E vaccine contains two gp120 envelope glycoproteins, one from the subtype B HIV-1 MN isolate and one from the subtype CRF01_AE A244 isolate. Each envelope glycoprotein harbors a highly conserved 27-amino acid HSV-1 glycoprotein D (gD) tag sequence that shares 93% sequence identity with the HSV-2 gD sequence. We assessed whether vaccine-induced anti-gD antibodies protected females against HSV-2 acquisition in RV144. Of the women enrolled in RV144, 777 vaccine and 807 placebo recipients were eligible and randomly selected according to their pre-vaccination HSV-1 and HSV-2 serostatus for analysis. Immunoglobulin G (IgG) and IgA responses to gD were determined by a binding antibody multiplex assay and HSV-2 serostatus was determined by Western blot analysis. Ninety-three percent and 75% of the vaccine recipients had anti-gD IgG and IgA responses two weeks post last vaccination, respectively. There was no evidence of reduction in HSV-2 infection by vaccination compared to placebo recipients over 78 weeks of follow-up. The annual incidence of HSV-2 infection in individuals who were HSV-2 negative at baseline or HSV-1 positive and HSV-2 indeterminate at baseline were 4.38/100 person-years (py) and 3.28/100 py in the vaccine and placebo groups, respectively. Baseline HSV-1 status did not affect subsequent HSV-2 acquisition. Specifically, the estimated odds ratio of HSV-2 infection by Week 78 for female placebo recipients who were baseline HSV-1 positive (n = 422) vs. negative (n = 1120) was 1.14 [95% confidence interval 0.66 to 1.94, p = 0.64)]. No evidence of reduction in the incidence of HSV-2 infection by vaccination was detected. AIDSVAX® B/E containing gD did not confer protection from HSV-2 acquisition in HSV-2 seronegative women, despite eliciting anti-gD serum antibodies.
Deep Sequencing Reveals Central Nervous System Compartmentalization in Multiple Transmitted/Founder Virus Acute HIV-1 Infection
HIV-1 disseminates to a broad range of tissue compartments during acute HIV-1 infection (AHI). The central nervous system (CNS) can serve as an early and persistent site of viral replication, which poses a potential challenge for HIV-1 remission strategies that target the HIV reservoir. CNS compartmentalization is a key feature of HIV-1 neuropathogenesis. Thus far, the timing of how early CNS compartmentalization develops after infection is unknown. We examined whether HIV-1 transmitted/founder (T/F) viruses differ between CNS and blood during AHI using single-genome sequencing of envelope gene and further examined subregions in pol and env using next-generation sequencing in paired plasma and cerebrospinal fluid (CSF) from 18 individuals. Different proportions of mostly minor variants were found in six of the eight multiple T/F-infected individuals, indicating enrichment of some variants in CSF that may lead to significant compartmentalization in the later stages of infection. This study provides evidence for the first time that HIV-1 compartmentalization in the CNS can occur within days of HIV-1 exposure in multiple T/F infections. Further understanding of factors that determine enrichment of T/F variants in the CNS, as well as potential long-term implications of these findings for persistence of HIV-1 reservoirs and neurological impairment in HIV, is needed.