Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
112 result(s) for "Kim, Bong Heon"
Sort by:
LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy
LC3/ATG8 has long been appreciated to play a central role in autophagy, by which a variety of cytoplasmic materials are delivered to lysosomes and eventually degraded. However, information on the molecular functions of LC3 in RNA biology is very limited. Here, we show that LC3B is an RNA-binding protein that directly binds to mRNAs with a preference for a consensus AAUAAA motif corresponding to a polyadenylation sequence. Autophagic activation promotes an association between LC3B and target mRNAs and triggers rapid degradation of target mRNAs in a CCR4-NOT–dependent manner before autolysosome formation. Furthermore, our transcriptome-wide analysis reveals that PRMT1 mRNA, which encodes a negative regulator of autophagy, is one of the major substrates. Rapid degradation of PRMT1 mRNA by LC3B facilitates autophagy. Collectively, we demonstrate that LC3B acts as an RNA-binding protein and an mRNA decay factor necessary for efficient autophagy. LC3/ATG8 plays an essential role in autophagy. Here the authors show that LC3B exhibits RNA-binding ability and induces rapid degradation of target mRNAs via autophagic activation, highlighting the interplay between autophagy and RNA biology.
Structure and activation of the RING E3 ubiquitin ligase TRIM72 on the membrane
Defects in plasma membrane repair can lead to muscle and heart diseases in humans. Tripartite motif-containing protein (TRIM)72 (mitsugumin 53; MG53) has been determined to rapidly nucleate vesicles at the site of membrane damage, but the underlying molecular mechanisms remain poorly understood. Here we present the structure of Mus musculus TRIM72, a complete model of a TRIM E3 ubiquitin ligase. We demonstrated that the interaction between TRIM72 and phosphatidylserine-enriched membranes is necessary for its oligomeric assembly and ubiquitination activity. Using cryogenic electron tomography and subtomogram averaging, we elucidated a higher-order model of TRIM72 assembly on the phospholipid bilayer. Combining structural and biochemical techniques, we developed a working molecular model of TRIM72, providing insights into the regulation of RING-type E3 ligases through the cooperation of multiple domains in higher-order assemblies. Our findings establish a fundamental basis for the study of TRIM E3 ligases and have therapeutic implications for diseases associated with membrane repair. The authors present the full-length dimeric TRIM72 E3 ubiquitin ligase and the architecture of its high-order assembly bound to a phosphatidylserine-enriched membrane, providing insights into its role in membrane repair and ubiquitylation.
Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates
N-degron pathways are proteolytic systems that target proteins bearing N-terminal (Nt) degradation signals (degrons) called N-degrons. Nt-Arg of a protein is among Nt-residues that can be recognized as destabilizing ones by the Arg/N-degron pathway. A proteolytic cleavage of a protein can generate Arg at the N terminus of a resulting C-terminal (Ct) fragment either directly or after Nt-arginylation of that Ct-fragment by the Ate1 arginyl-tRNA-protein transferase (R-transferase), which uses Arg-tRNAArg as a cosubstrate. Ate1 can Nt-arginylate Nt-Asp, Nt-Glu, and oxidized Nt-Cys* (Cys-sulfinate or Cys-sulfonate) of proteins or short peptides. Ate1 genes of fungi, animals, and plants have been cloned decades ago, but a three-dimensional structure of Ate1 remained unknown. A detailed mechanism of arginylation is unknown as well. We describe here the crystal structure of the Ate1 R-transferase from the budding yeast Kluyveromyces lactis. The 58-kDa R-transferase comprises two domains that recognize, together, an acidic Nt-residue of an acceptor substrate, the Arg residue of Arg-tRNAArg, and a 3′-proximal segment of the tRNAArg moiety. The enzyme’s active site is located, at least in part, between the two domains. In vitro and in vivo arginylation assays with site-directed Ate1 mutants that were suggested by structural results yielded inferences about specific binding sites of Ate1. We also analyzed the inhibition of Nt-arginylation activity of Ate1 by hemin (Fe3+-heme), and found that hemin induced the previously undescribed disulfide-mediated oligomerization of Ate1. Together, these results advance the understanding of R-transferase and the Arg/N-degron pathway.
ACCORD: an assessment tool to determine the orientation of homodimeric coiled-coils
The coiled-coil (CC) domain is a very important structural unit of proteins that plays critical roles in various biological functions. The major oligomeric state of CCs is a dimer, which can be either parallel or antiparallel. The orientation of each α-helix in a CC domain is critical for the molecular function of CC-containing proteins, but cannot be determined easily by sequence-based prediction. We developed a biochemical method for assessing differences between parallel and antiparallel CC homodimers and named it ACCORD ( A ssessment tool for homodimeric C oiled- C oil OR ientation D ecision). To validate this technique, we applied it to 15 different CC proteins with known structures, and the ACCORD results identified these proteins well, especially with long CCs. Furthermore, ACCORD was able to accurately determine the orientation of a CC domain of unknown directionality that was subsequently confirmed by X-ray crystallography and small angle X-ray scattering. Thus, ACCORD can be used as a tool to determine CC directionality to supplement the results of in silico prediction.
SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease
Sodium–glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular events in humans with type 2 diabetes (T2D); however, the underlying mechanism remains unclear. Activation of the NLR family, pyrin domain-containing 3 (NLRP3) inflammasome and subsequent interleukin (IL)-1β release induces atherosclerosis and heart failure. Here we show the effect of SGLT2 inhibitor empagliflozin on NLRP3 inflammasome activity. Patients with T2D and high cardiovascular risk receive SGLT2 inhibitor or sulfonylurea for 30 days, with NLRP3 inflammasome activation analyzed in macrophages. While the SGLT2 inhibitor’s glucose-lowering capacity is similar to sulfonylurea, it shows a greater reduction in IL-1β secretion compared to sulfonylurea accompanied by increased serum β-hydroxybutyrate (BHB) and decreased serum insulin. Ex vivo experiments with macrophages verify the inhibitory effects of high BHB and low insulin levels on NLRP3 inflammasome activation. In conclusion, SGLT2 inhibitor attenuates NLRP3 inflammasome activation, which might help to explain its cardioprotective effects. SGLT2 inhibitors, a class of type 2 diabetes medication, reduce cardiovascular events in patients beyond expectation from blood sugar control. Here the authors report a randomized controlled trial showing that SGLT2 inhibitors reduce inflammasome activation in peripheral macrophages, which may contribute to the cardiovascular protection.
Reconstruction of Ocean Color Data Using Machine Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea
The most problematic issue in the ocean color application is the presence of heavy clouds, especially in polar regions. For that reason, the demand for the ocean color application in polar regions is increased. As a way to overcome such issues, we conducted the reconstruction of the chlorophyll-a concentration (CHL) data using the machine learning-based models to raise the usability of CHL data. This analysis was first conducted on a regional scale and focused on the biologically-valued Cape Hallett, Ross Sea, Antarctica. Environmental factors and geographical information associated with phytoplankton dynamics were considered as predictors for the CHL reconstruction, which were obtained from cloud-free microwave and reanalysis data. As the machine learning models used in the present study, the ensemble-based models such as Random forest (RF) and Extremely randomized tree (ET) were selected with 10-fold cross-validation. As a result, both CHL reconstructions from the two models showed significant agreement with the standard satellite-derived CHL data. In addition, the reconstructed CHLs were close to the actual CHL value even where it was not observed by the satellites. However, there is a slight difference between the CHL reconstruction results from the RF and the ET, which is likely caused by the difference in the contribution of each predictor. In addition, we examined the variable importance for the CHL reconstruction quantitatively. As such, the sea surface and atmospheric temperature, and the photosynthetically available radiation have high contributions to the model developments. Mostly, geographic information appears to have a lower contribution relative to environmental predictors. Lastly, we estimated the partial dependences for the predictors for further study on the variable contribution and investigated the contributions to the CHL reconstruction with changes in the predictors.
Three-dimensional electronic microfliers inspired by wind-dispersed seeds
Large, distributed collections of miniaturized, wireless electronic devices 1 , 2 may form the basis of future systems for environmental monitoring 3 , population surveillance 4 , disease management 5 and other applications that demand coverage over expansive spatial scales. Aerial schemes to distribute the components for such networks are required, and—inspired by wind-dispersed seeds 6 —we examined passive structures designed for controlled, unpowered flight across natural environments or city settings. Techniques in mechanically guided assembly of three-dimensional (3D) mesostructures 7 – 9 provide access to miniature, 3D fliers optimized for such purposes, in processes that align with the most sophisticated production techniques for electronic, optoelectronic, microfluidic and microelectromechanical technologies. Here we demonstrate a range of 3D macro-, meso- and microscale fliers produced in this manner, including those that incorporate active electronic and colorimetric payloads. Analytical, computational and experimental studies of the aerodynamics of high-performance structures of this type establish a set of fundamental considerations in bio-inspired design, with a focus on 3D fliers that exhibit controlled rotational kinematics and low terminal velocities. An approach that represents these complex 3D structures as discrete numbers of blades captures the essential physics in simple, analytical scaling forms, validated by computational and experimental results. Battery-free, wireless devices and colorimetric sensors for environmental measurements provide simple examples of a wide spectrum of applications of these unusual concepts. With a design inspired by wind-dispersed seeds, a series of three-dimensional passive fliers at the macro-, meso- and microscale are realized that can bear active electronic payloads.
A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs
Muscle development and lipid accumulation in muscle critically affect meat quality of livestock. However, the genetic factors underlying myofiber-type specification and intramuscular fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12 that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3 gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele carriers exhibited significantly higher values of a* and IMF than q allele carriers. Furthermore, chromatin immunoprecipitation and cotransfection assays showed that the structural variant in the 5'-flanking region of MYH3 abrogated the binding of the myogenic regulatory factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig populations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates domestication. In conclusion, we identified a functional regulatory sequence variant in porcine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important role in improving pork quality in current breeding programs.
Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS
Most previous studies have been focused on the variation of tea chemical composition by fermentative processes as well as different cultivars and regions. The detailed changes of flavonoid profiles were described for the first time by each processing step of green and black tea leaves in this study. A total of 24 flavonoid derivatives including catechins, theaflavins, and flavonols were separated and identified from the tea samples based on UPLC-DAD-QToF/MS data and constructed library. Among these, the fragmentation pathway of theaflavins was proposed specifically in positive ionization mode for structural interpretation. During leaf processing, the individual flavonols were changed as diverse patterns according to their aglycone types and glycosylated forms, but their total content showed a slight difference. EGCG and ECG were increased after roasting approximately twofold higher than that of fresh leaves (EGCG, 2709.5 →6085.6; ECG, 1548.0 →2318.2 mg/100 g dry weight, respectively) in green tea while considerably decreased their contents due to oxidation and conversion to theaflavins after fermentation during black tea processing. Especially, the drying steps also found to be factor to influence positively to increase the flavonoid contents in both tea processing. Therefore, this result indicated that detailed conditions of each processing step played important roles in changing the flavonoid profiles from tea leaves.Graphical abstract