Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
669
result(s) for
"Kim, Hyoung Kyu"
Sort by:
Evogliptin, a DPP-4 inhibitor, prevents diabetic cardiomyopathy by alleviating cardiac lipotoxicity in db/db mice
2023
Dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering drugs for type 2 diabetes mellitus (T2DM). We investigated whether evogliptin® (EVO), a DPP-4 inhibitor, could protect against diabetic cardiomyopathy (DCM) and the underlying mechanisms. Eight-week-old diabetic and obese db/db mice were administered EVO (100 mg/kg/day) daily by oral gavage for 12 weeks. db/db control mice and C57BLKS/J as wild-type (WT) mice received equal amounts of the vehicle. In addition to the hypoglycemic effect, we examined the improvement in cardiac contraction/relaxation ability, cardiac fibrosis, and myocardial hypertrophy by EVO treatment. To identify the mechanisms underlying the improvement in diabetic cardiomyopathy by EVO treatment, its effect on lipotoxicity and the mitochondrial damage caused by lipid droplet accumulation in the myocardium were analyzed. EVO lowered the blood glucose and HbA1c levels and improved insulin sensitivity but did not affect the body weight or blood lipid profile. Cardiac systolic/diastolic function, hypertrophy, and fibrosis were improved in the EVO-treated group. EVO prevented cardiac lipotoxicity by reducing the accumulation of lipid droplets in the myocardium through suppression of CD36, ACSL1, FABP3, PPARgamma, and DGAT1 and enhancement of the phosphorylation of FOXO1, indicating its inhibition. The EVO-mediated improvement in mitochondrial function and reduction in damage were achieved through activation of PGC1a/NRF1/TFAM, which activates mitochondrial biogenesis. RNA-seq results for the whole heart confirmed that EVO treatment mainly affected the differentially expressed genes (DEGs) related to lipid metabolism. Collectively, these findings demonstrate that EVO improves cardiac function by reducing lipotoxicity and mitochondrial injury and provides a potential therapeutic option for DCM.
Diabetes: A treatment for preserving heart health
A drug for managing glucose levels in type 2 diabetes can also preserve heart function by regulating fatty acid metabolism in cardiovascular tissues. Cardiomyopathy is a serious complication associated with diabetes, putting patients at risk of heart failure. There is evidence that diabetes drugs targeting the enzyme DPP-4 can improve heart health, and researchers led by Hyoung Kyu Kim and Jong Chul Won at Inje University, Busan and Seoul, South Korea, evaluated one such drug, evogliptin, in a mouse model of diabetes. They showed that in addition to controlling blood sugar, this drug also improved blood pressure and overall cardiac function. Evogliptin also reduced abnormal accumulation of fat and minimized the resulting disruption of normal metabolic function in heart muscle cells. These results highlight a new opportunity to manage diabetic cardiomyopathy.
Journal Article
Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress
by
Back, Sung Hoon
,
Kim, Seong Hun
,
Kim, Hyoung-Kyu
in
Activating Transcription Factor 4 - metabolism
,
Adaptation
,
Adaptation, Physiological
2015
Aims/hypothesis
Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-diabetic and anti-obesity activity. FGF21 expression is increased in patients with and mouse models of obesity or nonalcoholic fatty liver disease (NAFLD). However, the functional role and molecular mechanism of FGF21 induction in obesity or NAFLD are not clear. As endoplasmic reticulum (ER) stress is triggered in obesity and NAFLD, we investigated whether ER stress affects FGF21 expression or whether FGF21 induction acts as a mechanism of the unfolded protein response (UPR) adaptation to ER stress induced by chemical stressors or obesity.
Methods
Hepatocytes or mouse embryonic fibroblasts deficient in UPR signalling pathways and liver-specific
eIF2α
mutant mice were employed to investigate the in vitro and in vivo effects of ER stress on FGF21 expression, respectively. The in vivo importance of FGF21 induction by ER stress and obesity was determined using inducible
Fgf21
-transgenic mice and
Fgf21
-null mice with or without leptin deficiency.
Results
We found that ER stressors induced FGF21 expression, which was dependent on a PKR-like ER kinase–eukaryotic translation factor 2α–activating transcription factor 4 pathway both in vitro and in vivo.
Fgf21
-null mice exhibited increased expression of ER stress marker genes and augmented hepatic lipid accumulation after tunicamycin treatment. However, these changes were attenuated in inducible
Fgf21
-transgenic mice. We also observed that
Fgf21
-null mice with leptin deficiency displayed increased hepatic ER stress response and liver injury, accompanied by deteriorated metabolic variables.
Conclusions/interpretation
Our results suggest that FGF21 plays an important role in the adaptive response to ER stress- or obesity-induced hepatic metabolic stress.
Journal Article
Echinochrome Prevents Sulfide Catabolism-Associated Chronic Heart Failure after Myocardial Infarction in Mice
2023
Abnormal sulfide catabolism, especially the accumulation of hydrogen sulfide (H2S) during hypoxic or inflammatory stresses, is a major cause of redox imbalance-associated cardiac dysfunction. Polyhydroxynaphtoquinone echinochrome A (Ech-A), a natural pigment of marine origin found in the shells and needles of many species of sea urchins, is a potent antioxidant and inhibits acute myocardial ferroptosis after ischemia/reperfusion, but the chronic effect of Ech-A on heart failure is unknown. Reactive sulfur species (RSS), which include catenated sulfur atoms, have been revealed as true biomolecules with high redox reactivity required for intracellular energy metabolism and signal transduction. Here, we report that continuous intraperitoneal administration of Ech-A (2.0 mg/kg/day) prevents RSS catabolism-associated chronic heart failure after myocardial infarction (MI) in mice. Ech-A prevented left ventricular (LV) systolic dysfunction and structural remodeling after MI. Fluorescence imaging revealed that intracellular RSS level was reduced after MI, while H2S/HS− level was increased in LV myocardium, which was attenuated by Ech-A. This result indicates that Ech-A suppresses RSS catabolism to H2S/HS− in LV myocardium after MI. In addition, Ech-A reduced oxidative stress formation by MI. Ech-A suppressed RSS catabolism caused by hypoxia in neonatal rat cardiomyocytes and human iPS cell-derived cardiomyocytes. Ech-A also suppressed RSS catabolism caused by lipopolysaccharide stimulation in macrophages. Thus, Ech-A has the potential to improve chronic heart failure after MI, in part by preventing sulfide catabolism.
Journal Article
Echinochrome A Treatment Alleviates Fibrosis and Inflammation in Bleomycin-Induced Scleroderma
by
Song, Young-Chul
,
Kim, Jae-Ho
,
Han, Jin
in
anti-inflammatory activity
,
Antioxidants
,
Autoimmune diseases
2021
Scleroderma is an autoimmune disease caused by the abnormal regulation of extracellular matrix synthesis and is activated by non-regulated inflammatory cells and cytokines. Echinochrome A (EchA), a natural pigment isolated from sea urchins, has been demonstrated to have antioxidant activities and beneficial effects in various disease models. The present study demonstrates for the first time that EchA treatment alleviates bleomycin-induced scleroderma by normalizing dermal thickness and suppressing collagen deposition in vivo. EchA treatment reduces the number of activated myofibroblasts expressing α-SMA, vimentin, and phosphorylated Smad3 in bleomycin-induced scleroderma. In addition, it decreased the number of macrophages, including M1 and M2 types in the affected skin, suggesting the induction of an anti-inflammatory effect. Furthermore, EchA treatment markedly attenuated serum levels of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, in a murine scleroderma model. Taken together, these results suggest that EchA is highly useful for the treatment of scleroderma, exerting anti-fibrosis and anti-inflammatory effects.
Journal Article
Effect of Echinochrome A on Submandibular Gland Dysfunction in Ovariectomized Rats
by
Cheon, Yong-Il
,
Kim, Ji-Min
,
Shin, Sung-Chan
in
17β-Estradiol
,
Acetyl-CoA carboxylase
,
Animals
2022
Post-menopausal dry mouth or xerostomia is caused by reduced salivary secretion. This study aimed to investigate the efficacy of echinochrome A (Ech A) in alleviating submandibular gland dysfunctions in ovariectomized rats that mimic menopause. Female rats that were eight-weeks-old were randomly divided into SHAM-6, -12; OVX-6, -12; and ECH-6, -12 groups (consisting of 6- and 12-weeks post-sham-operated, ovariectomized, and Ech A-treated ovariectomized rats, respectively). The ECH groups had lower body weight than OVX but similar food intake and estradiol or estrogen receptor β expression. However, the ECH groups had lower mRNA expression of sterol-regulatory element binding protein-1c (Srebp-1c), acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), cluster of differentiation 36 (Cd36), and lipid vacuole deposition than OVX mice. Moreover, reactive oxygen species (ROS), malondialdehyde (MDA), and iron accumulation were lower in the ECH than in the OVX groups. Fibrosis markers, transforming growth factor β (Tgf-βI and Tgf-βII mRNA) increased in the OVX than SHAM groups but decreased in the ECH groups. Aquaporin (Aqp-1 and Aqp-5 mRNA) and mucin expressions were downregulated in the OVX groups but improved with Ech A. In addition, Ech A prevented post-menopausal salivary gland dysfunction by inhibiting lipogenesis and ferroptosis. These findings suggest Ech A as an effective remedy for treating menopausal dry mouth.
Journal Article
The incidence and risk factors of acute kidney injury after hepatobiliary surgery: a prospective observational study
by
Cho, Eunjung
,
Cho, Won-Yong
,
Jo, Sang-Kyung
in
Acute Kidney Injury - blood
,
Acute Kidney Injury - etiology
,
Acute Kidney Injury - urine
2014
Background
Although intraperitoneal surgery is a major operation associated with postoperative acute kidney injury (AKI), the incidence, risk factors, and long-term renal outcome are not well known. We aimed to determine the risk factors and 6 months renal outcome in patients with clinical or subclinical AKI after hepatobiliary surgery. We also assessed the validity of urine neutrophil gelatinase-associated lipocalin (NGAL) in the early detection of AKI or prediction of renal outcome.
Methods
This prospective observational study enrolled patients with normal renal function who underwent hepatobiliary surgeries. Urine and serum samples were collected for NGAL measurement.
Results
Among 131 patients, 10 (7.6%) developed postoperative AKI. Urine NGAL at 12 h postsurgery was the most predictive parameter for the diagnosis of AKI (cutoff, 92.85 ng/mL). With the cutoff value, subclinical AKI was diagnosed in 42 (32.1%) patients. Patients with clinical AKI and those with subclinical AKI were assigned to the AKI group. The AKI group had significantly higher model for end-stage liver disease and sodium (MELD-Na) score, lower albumin level, and longer hospital stay after surgery than the non-AKI group. Older age and higher MELD-Na score were independent risk factors for the development of postoperative AKI. At 6 months postsurgery, the estimated glomerular filtration rate (eGFR) in the AKI group was significantly lower than that in the non-AKI group, although the baseline eGFR was not different. In multiple linear regression analysis, the maximum urine NGAL level during 24 h postsurgery, intraoperative fluid balance, and having liver transplantation were significantly associated with a poor 6 months renal outcome.
Conclusion
Urine NGAL was useful in the early diagnosis of postoperative AKI as well as in predicting the 6 months renal outcome after hepatobiliary surgery. A considerable proportion of patients developed subclinical AKI, and these patients showed worse renal outcome compared with the non-AKI group.
Journal Article
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
by
Oh, Hyunhee
,
Ko, TaeHee
,
Back, Sung Hoon
in
631/443/319/1642
,
631/80/39
,
Activating Transcription Factor 4 - metabolism
2013
Defects in mitochondrial function have been believed to contribute to insulin resistance. Myung-Shik Lee and colleagues now show that mitochondrial dysfunction in muscle induced by tissue-specific deficiency of autophagy results in upregulation of Fgf21 and improved metabolism, suggesting that at least some mitochondrial dysfunction may actually be beneficial.
Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of
Atg7
(encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.
Journal Article
Alternative splicing isoforms in health and disease
by
Ko, Kyung Soo
,
Michael Huy Cuong Pham
,
Rhee, Byoung Doo
in
Alternative splicing
,
Cancer
,
Cardiovascular diseases
2018
Alternative splicing (AS) of protein-coding messenger RNAs is an essential regulatory mechanism in eukaryotic gene expression that controls the proper function of proteins. It is also implicated in the physiological regulation of mitochondria and various ion channels. Considering that mis-splicing can result in various human diseases by modifying or abrogating important physiological protein functions, a fine-tuned balance of AS is essential for human health. Accumulated data highlight the importance of alternatively spliced isoforms in various diseases, including neurodegenerative disorders, cancer, immune and infectious diseases, cardiovascular diseases, and metabolic conditions. However, basic understanding of disease mechanisms and development of clinical applications still require the integration and interpretation of physiological roles of AS. This review discusses the roles of AS in health and various diseases, while highlighting potential AS-targeting therapeutic applications.
Journal Article
Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells
by
Chang, Minsun
,
Jeong, Seung Hun
,
Shin, Yubin
in
Aerobiosis
,
AKT protein
,
AMP-Activated Protein Kinases - metabolism
2015
Tamoxifen resistance is often observed in the majority of estrogen receptor-positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9--tamoxifen-resistant human breast cancer cell lines derived from MCF7--are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer.
Journal Article
Multifaceted Clinical Effects of Echinochrome
by
Vasileva, Elena A.
,
Kim, Hyoung Kyu
,
Mishchenko, Natalia P.
in
active ingredients
,
Antioxidants
,
Antioxidants - pharmacology
2021
The marine drug histochrome is a special natural antioxidant. The active substance of the drug is echinochrome A (Ech A, 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone), the most abundant quinonoid pigment in sea urchins. The medicine is clinically used in cardiology and ophthalmology based on the unique properties of Ech A, which simultaneously block various links of free radical reactions. In the last decade, numerous studies have demonstrated the effectiveness of histochrome in various disease models without adverse effects. Here, we review the data on the various clinical effects and modes of action of Ech A in ophthalmic, cardiovascular, cerebrovascular, inflammatory, metabolic, and malignant diseases.
Journal Article