Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
30
result(s) for
"Kim, JangKeun"
Sort by:
Direct RNA sequencing of astronaut blood reveals spaceflight-associated m6A increases and hematopoietic transcriptional responses
2024
The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m
6
A methylation profiles for a human space mission, suggesting a significant spike in m
6
A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome’s dynamic response to spaceflight.
Here the authors explore the role of chemical modifications within RNA molecules in spaceflight response, observing increased m
6
A mRNA modifications immediately post-spaceflight in gene markers associated with stress response.
Journal Article
Collection of biospecimens from the inspiration4 mission establishes the standards for the space omics and medical atlas (SOMA)
2024
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.
Here the authors provide the biospecimen collection methodology from the SpaceX Inspiration4 mission, including venous blood, capillary blood, saliva, urine, stool, skin biopsy, body swab, and environmental swab samples.
Journal Article
Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight
2024
As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated “spaceflight secretome profiles,” which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.
Here the authors report spaceflight secretome profiles by integrating plasma proteome, metabolome, and extracellular vesicles/particles proteome from the SpaceX Inspiration4 crew, which showed differences in coagulation, oxidative stress, and brain-enriched proteins.
Journal Article
Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight
2024
Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.
The phenotype and function of immune cells could change during spaceflight. Here the authors use simulated microgravity, coupled to validation with spaceflight data, to assess whether there are distinct gene expression changes in resting and TLR 7/8 stimulated PBMCs and found conserved changes in IFN signalling, the cytoskeleton, IL-6 and sirtuin signalling.
Journal Article
Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight
2024
Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.
Here the authors profile skin microenvironment changes in response to spaceflight by performing a multi omics analysis using skin punch biopsies from the crew members of SpaceX Inspiration4 mission comparing before, post launch and one day after return 91 of the 3-day mission.
Journal Article
Ethical considerations for the age of non-governmental space exploration
2024
Mounting ambitions and capabilities for public and private, non-government sector crewed space exploration bring with them an increasingly diverse set of space travelers, raising new and nontrivial ethical, legal, and medical policy and practice concerns which are still relatively underexplored. In this piece, we lay out several pressing issues related to ethical considerations for selecting space travelers and conducting human subject research on them, especially in the context of non-governmental and commercial/private space operations.
New and dynamically changing opportunities for commercial/private and civilian spaceflight raise the need for an examination of how to ethically guide space industry and community. This Perspective explores such considerations with respect to space traveler selection and human subject research.
Journal Article
Protective alleles and precision healthcare in crewed spaceflight
2024
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.
As space travel promises to become a reality for more humans, insights from human genetics could serve to inform space medicine. Here, the authors overview genetic variants that might confer a protective effect in space, and ethical and technical challenges to translating these findings.
Journal Article
Multi-Omics Profiling of Individuals Sustaining Extreme Physical Stressors
2025
Human engagement in extreme activities, from spaceflight to deep-sea diving and extreme sports, presents unique physiological challenges. Understanding the molecular mechanisms underlying adaptations to these demands is crucial for developing strategies to enhance human performance and resilience in such environments. This review integrates multi-omics data across a range of extreme phenotypes, including astronauts, scuba divers, acute alcohol consumers, long-haul flight passengers, bodybuilders, and simulation racers. We analyze current literature in genomic, transcriptomic, proteomic, metabolomic, and metagenomic studies to identify common and phenotype-specific adaptations, highlighting potential biomarkers and pathways associated with resilience in harsh conditions. This integrated approach offers insights into human adaptability and provides a foundation for developing personalized strategies to mitigate risks and enhance performance in extreme environments, with particular relevance to extended spaceflight.
Journal Article
Spatiotemporal expression and control of haemoglobin in space
by
Damle, Namita
,
Mzava, Omary
,
Tierney, Braden T.
in
631/250/232/1473
,
631/337/2019
,
631/92/500
2024
It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts. In this study, we examined the developmental expression of haemoglobin over time and space using a unique suite of multi-omic datasets available on NASA GeneLab, from the NASA Twins Study, the JAXA CFE study, and the Inspiration4 mission. Our findings reveal significant variations in globin gene expression corresponding to the distinct spatiotemporal characteristics of the collected samples. This study sheds light on the dynamic nature of globin gene regulation in response to the space environment and provides valuable insights into the broader implications of space omics research.
Here the authors analyse the impact of space on haemoglobin gene regulation using data from NASA, JAXA and SpaceX i4 missions. They find that globin gene down-regulation leads to space anaemia with post-flight recovery, and reveal an adult-to-foetal globin switch activation.
Journal Article
Evaluation of rRNA depletion methods for capturing the RNA virome from environmental surfaces
by
Maria A. Sierra
,
JangKeun Kim
,
Yuh Shiwa
in
Advancing Methods in Molecular Biology and Genetics
,
Analysis
,
Bacteria
2023
Objective
Metatranscriptomic analysis of RNA viromes on built-environment surfaces is hampered by low RNA yields and high abundance of rRNA. Therefore, we evaluated the quality of libraries, efficiency of rRNA depletion, and viral detection sensitivity using a mock community and a melamine-coated table surface RNA with levels below those required (< 5 ng) with a library preparation kit (NEBNext Ultra II Directional RNA Library Prep Kit).
Results
Good-quality RNA libraries were obtained from 0.1 ng of mock community and table surface RNA by changing the adapter concentration and number of PCR cycles. Differences in the target species of the rRNA depletion method affected the community composition and sensitivity of virus detection. The percentage of viral occupancy in two replicates was 0.259 and 0.290% in both human and bacterial rRNA-depleted samples, a 3.4 and 3.8-fold increase compared with that for only bacterial rRNA-depleted samples. Comparison of SARS-CoV-2 spiked-in human rRNA and bacterial rRNA-depleted samples suggested that more SARS-CoV-2 reads were detected in bacterial rRNA-depleted samples. We demonstrated that metatranscriptome analysis of RNA viromes is possible from RNA isolated from an indoor surface (representing a built-environment surface) using a standard library preparation kit.
Journal Article