Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Kim, Joonkee"
Sort by:
The multimodality cell segmentation challenge: toward universal solutions
2024
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.
Cell segmentation is crucial in many image analysis pipelines. This analysis compares many tools on a multimodal cell segmentation benchmark. A Transformer-based model performed best in terms of performance and general applicability.
Journal Article
The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions
2024
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multi-modality cell segmentation benchmark, comprising over 1500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.
Journal Article
Statistical Analysis of Video Images for Evaluating Pavement Distress
2000
This research examined pavement video images collected through application of video imaging system. A low-cost pavement imaging system using video technique was developed. To collect pavement video images, a field test was performed by the developed system. As a result of the video test runs, seven test loops were selected for further image analysis. The collected video images were processed by digital image processing to evaluate pavement condition. The calculated crack index values were analyzed by statistical technique to analyze repeatability of images and to identify significant variables. ANOVA tests for each seven-test loop showed that there was poor repeatability for AC and PCC images. The variable effects were tested using general linear model analysis. As a result of analysis, the significant variables for AC and PCC pavement images were identified.
Journal Article
Re3val: Reinforced and Reranked Generative Retrieval
2024
Generative retrieval models encode pointers to information in a corpus as an index within the model's parameters. These models serve as part of a larger pipeline, where retrieved information conditions generation for knowledge-intensive NLP tasks. However, we identify two limitations: the generative retrieval does not account for contextual information. Secondly, the retrieval can't be tuned for the downstream readers as decoding the page title is a non-differentiable operation. This paper introduces Re3val, trained with generative reranking and reinforcement learning using limited data. Re3val leverages context acquired via Dense Passage Retrieval to rerank the retrieved page titles and utilizes REINFORCE to maximize rewards generated by constrained decoding. Additionally, we generate questions from our pre-training dataset to mitigate epistemic uncertainty and bridge the domain gap between the pre-training and fine-tuning datasets. Subsequently, we extract and rerank contexts from the KILT database using the rerank page titles. Upon grounding the top five reranked contexts, Re3val demonstrates the Top 1 KILT scores compared to all other generative retrieval models across five KILT datasets.
Instructive Decoding: Instruction-Tuned Large Language Models are Self-Refiner from Noisy Instructions
2024
While instruction-tuned language models have demonstrated impressive zero-shot generalization, these models often struggle to generate accurate responses when faced with instructions that fall outside their training set. This paper presents Instructive Decoding (ID), a simple yet effective approach that augments the efficacy of instruction-tuned models. Specifically, ID adjusts the logits for next-token prediction in a contrastive manner, utilizing predictions generated from a manipulated version of the original instruction, referred to as a noisy instruction. This noisy instruction aims to elicit responses that could diverge from the intended instruction yet remain plausible. We conduct experiments across a spectrum of such noisy instructions, ranging from those that insert semantic noise via random words to others like 'opposite' that elicit the deviated responses. Our approach achieves considerable performance gains across various instruction-tuned models and tasks without necessitating any additional parameter updates. Notably, utilizing 'opposite' as the noisy instruction in ID, which exhibits the maximum divergence from the original instruction, consistently produces the most significant performance gains across multiple models and tasks.
Risk Perspective Exploration in Distributional Reinforcement Learning
2022
Distributional reinforcement learning demonstrates state-of-the-art performance in continuous and discrete control settings with the features of variance and risk, which can be used to explore. However, the exploration method employing the risk property is hard to find, although numerous exploration methods in Distributional RL employ the variance of return distribution per action. In this paper, we present risk scheduling approaches that explore risk levels and optimistic behaviors from a risk perspective. We demonstrate the performance enhancement of the DMIX algorithm using risk scheduling in a multi-agent setting with comprehensive experiments.
Toward Risk-based Optimistic Exploration for Cooperative Multi-Agent Reinforcement Learning
2023
The multi-agent setting is intricate and unpredictable since the behaviors of multiple agents influence one another. To address this environmental uncertainty, distributional reinforcement learning algorithms that incorporate uncertainty via distributional output have been integrated with multi-agent reinforcement learning (MARL) methods, achieving state-of-the-art performance. However, distributional MARL algorithms still rely on the traditional \\(\\epsilon\\)-greedy, which does not take cooperative strategy into account. In this paper, we present a risk-based exploration that leads to collaboratively optimistic behavior by shifting the sampling region of distribution. Initially, we take expectations from the upper quantiles of state-action values for exploration, which are optimistic actions, and gradually shift the sampling region of quantiles to the full distribution for exploitation. By ensuring that each agent is exposed to the same level of risk, we can force them to take cooperatively optimistic actions. Our method shows remarkable performance in multi-agent settings requiring cooperative exploration based on quantile regression appropriately controlling the level of risk.
MEDIAR: Harmony of Data-Centric and Model-Centric for Multi-Modality Microscopy
2022
Cell segmentation is a fundamental task for computational biology analysis. Identifying the cell instances is often the first step in various downstream biomedical studies. However, many cell segmentation algorithms, including the recently emerging deep learning-based methods, still show limited generality under the multi-modality environment. Weakly Supervised Cell Segmentation in Multi-modality High-Resolution Microscopy Images was hosted at NeurIPS 2022 to tackle this problem. We propose MEDIAR, a holistic pipeline for cell instance segmentation under multi-modality in this challenge. MEDIAR harmonizes data-centric and model-centric approaches as the learning and inference strategies, achieving a 0.9067 F1-score at the validation phase while satisfying the time budget. To facilitate subsequent research, we provide the source code and trained model as open-source: https://github.com/Lee-Gihun/MEDIAR
HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning
2023
With the proliferation of social media, accurate detection of hate speech has become critical to ensure safety online. To combat nuanced forms of hate speech, it is important to identify and thoroughly explain hate speech to help users understand its harmful effects. Recent benchmarks have attempted to tackle this issue by training generative models on free-text annotations of implications in hateful text. However, we find significant reasoning gaps in the existing annotations schemes, which may hinder the supervision of detection models. In this paper, we introduce a hate speech detection framework, HARE, which harnesses the reasoning capabilities of large language models (LLMs) to fill these gaps in explanations of hate speech, thus enabling effective supervision of detection models. Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines, using existing free-text human annotations. Analysis demonstrates that our method enhances the explanation quality of trained models and improves generalization to unseen datasets. Our code is available at https://github.com/joonkeekim/hare-hate-speech.git.
The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions
2024
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multi-modality cell segmentation benchmark, comprising over 1500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.