Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
6,225 result(s) for "Kim, Sang Yong"
Sort by:
South Korea's 70-year endeavor for foreign policy, national defense, and unification
This book brings Korea's finest foreign policy minds together in contemplating the risks and rewards of finally ending the 70 year stalemate between North and South Korea through reunification. While North Korea is in conflict with the United States over denuclearization and regime security, the South Korean government is focusing on economic development preparing for the day when the two Koreas are unified. This book will help scholars, activists and policy-makers from all over the world systematically understand the current diplomatic and security issues in the Korean peninsula.
Spectrum Auction Policy Design for International Mobile Telecommunications in South Korea: Application of Agent-Based Simulation
Spectrum auctions in international mobile telecommunications (IMT) are a representative method for selling the right to transmit signals within a specific band of electromagnetic waves to communication service providers (CSPs); it is important to design a fair spectrum auction that can benefit both government and auction bidders. The government should reduce the burden of maintenance costs by setting a reasonable initial price and selling it to bidders at the highest price they can afford. However, due to the complex auction rules and decision-making process, not many studies has been conducted on how to select an appropriate initial price for the auction. This study aims at introducing a novel simulation modeling approach to develop a spectrum auction policy for international mobile telecommunications (IMT) using agent-based simulation (ABS), which involves three telecommunications service provider types (i.e., the Aggressive bidder, the Moderate bidder, and the Conservative bidder) and the auction environment of IMT in South Korea. In particular, the proposed approach adopts the exponential utility theory to model the behavior of auction bidders and identify the optimal initial bid price. The devised ABS model is calibrated to the IMT spectrum auction conducted in 2018 in South Korea, and the best initial pricing policy identified (i.e., $85.24 million per spectrum block) regarding a sustainable market environment for existing service providers (i.e., 10 blocks for the Aggressive bidder, 10 blocks for the Moderate bidder, and 8 blocks for the Conservative bidder). The proposed approach will be beneficial to both government agencies and auction bidders under fair competition in the IMT market.
Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis
Purpose In the present study, the clinical outcomes and second-look arthroscopic findings of intra-articular injection of stem cells with arthroscopic lavage for treatment of elderly patients with knee osteoarthritis (OA) were evaluated. Methods Stem cell injections combined with arthroscopic lavage were administered to 30 elderly patients (≥65 years) with knee OA. Subcutaneous adipose tissue was harvested from both buttocks by liposuction. After stromal vascular fractions were isolated, a mean of 4.04 × 10 6 stem cells (9.7 % of 4.16 × 10 7 stromal vascular fraction cells) were prepared and injected in the selected knees of patients after arthroscopic lavage. Outcome measures included the Knee Injury and Osteoarthritis Outcome Scores, visual analog scale, and Lysholm score at preoperative and 3-, 12-, and 2-year follow-up visits. Sixteen patients underwent second-look arthroscopy. Results Almost all patients showed significant improvement in all clinical outcomes at the final follow-up examination. All clinical results significantly improved at 2-year follow-up compared to 12-month follow-up ( P  < 0.05). Among elderly patients aged >65 years, only five patients demonstrated worsening of Kellgren–Lawrence grade. On second-look arthroscopy, 87.5 % of elderly patients (14/16) improved or maintained cartilage status at least 2 years postoperatively. Moreover, none of the patients underwent total knee arthroplasty during this 2-year period. Conclusion Adipose-derived stem cell therapy for elderly patients with knee OA was effective in cartilage healing, reducing pain, and improving function. Therefore, adipose-derived stem cell treatment appears to be a good option for OA treatment in elderly patients. Level of evidence Therapeutic case series study, Level IV.
Learning Curve Associated with Complications in Biportal Endoscopic Spinal Surgery: Challenges and Strategies
Descriptions of technical strategies to overcome pitfalls associated with early learning periods in biportal endoscopic spinal surgery (BESS). To introduce BESS for lumbar spinal diseases (LSDs) and to inform certain challenges to be overcome in mastering the technique. BESS has shown superior benefits including excellent magnification, a wider range of view by dynamic handling of an endoscope and instruments. Clinical reports, however, have not yet been very revealing for its new introduction into minimally invasive spine surgery. To evaluate the learning curve for BESS, the procedures for various LSDs by one surgeon were analyzed in the view of shortening of the operating times and reduction of complications. Reviewing of recorded procedures helped in finding the reasons and the implemented solutions. The 68 cases included 25 for lumbar disc herniation (LDH), 3 for revision for recurred LDH, 39 for lumbar spinal stenosis (LSS) and 1 for synovial cyst. The operation time for the total cases averaged 83.7±33.6 minutes. According to diagnosis, it was 68.2±23.7 minutes for LDH. After the 14th case of LDH, it was nearly constant and close to the average time. One level of LSS needed 110.4±34.4 minutes. Prolonged operation times even in some later cases of LSS were mainly from struggling against blurred vision due to epidural bleeding. There were 7 cases of complications (10.3%) including 2 cases of dural tear, 1 case of root injury, and 4 cases of incomplete decompression on postoperative magnetic resonance imaging. There was no case of symptomatic hematoma or wound infection. BESS seemed to have a relatively short learning curve period. The overall complication rate in early learning period was 10.3%. These could be avoided by magnified regional views on an endoscope and a clear surgical field by controlling epidural bleeding.
Improvement of the low gray-level expression using hybrid pulse width modulation and pulse amplitude modulation driving method for a micro light-emitting diode pixel circuit
A novel hybrid pulse width modulation (PWM) and pulse amplitude modulation (PAM) (HPP) driving method is proposed for improving the low gray-level expression of a micro light-emitting diode (µLED) display. At the high and middle gray-levels, PWM is adopted in order to suppress the wavelength shift of µLEDs. At the low gray-level, PAM is applied when the emission time and current of µLEDs simultaneously decrease. The HPP driving method is simulated by using a simplified p-type low-temperature polycrystalline silicon (LTPS) thin-film transistor (TFT)-based µLED pixel circuit. HPP driving exhibits stable PWM and PAM operations. Furthermore, HPP driving guarantees a data voltage range approximately 14 times larger than PWM driving, thus resulting in a robust operation with a maximum error rate of 3.83% under data signal distortion. Consequently, the µLED pixel circuit adopting HPP driving improves the low gray-level expression and demonstrates a robust circuit operation.
Emission driver circuit based on metal-oxide thin-film transistors capable of leakage current suppression for output stability
We proposed an emission driver circuit based on metal-oxide thin-film transistors (TFTs), which is designed to ensure stable output characteristics by suppressing leakage currents at the main nodes when TFTs are operated in depletion mode. To do this, we employed control signals with different low-level voltages and switching TFTs connected to the series-connected two transistors. The simulation results indicate that the featured circuit operates stably within a threshold voltage range of −3 V to 4 V, showing improved output characteristics compared to the conventional circuit. The circuit was fabricated with dimensions of 79.4 × 700 µm 2 based on 320 pixels per inch, and the resulting fabricated circuit exhibits a stable output voltage. These results suggest that the proposed emission driver circuit operates reliably when TFTs are operated in depletion mode.
Corrosion Behavior of Pipeline Carbon Steel under Different Iron Oxide Deposits in the District Heating System
The corrosion behavior of pipeline steel covered by iron oxides (α-FeOOH; Fe3O4 and Fe2O3) was investigated in simulated district heating water. In potentiodynamic polarization tests; the corrosion rate of pipeline steel is increased under the iron oxide but the increaseing rate is different due to the differnet chemical reactions of the covered iron oxides. Pitting corrosion was only observed on the α-FeOOH-covered specimen; which is caused by the crevice corrosion under the α-FeOOH. From Mott-Schottky and X-ray diffraction results; the surface reaction and oxide layer were dependent on the kind of iron oxides. The iron oxides deposit increases the failure risk of the pipeline and localized corrosion can be occurred under the α-FeOOH-covered region of the pipeline. Thus, prevention methods for the iron oxide deposit in the district pipeline system such as filtering or periodic chemical cleaning are needed.
A Graphene-Based Enzymatic Biosensor Using a Common-Gate Field-Effect Transistor for L-Lactic Acid Detection in Blood Plasma Samples
Lactate is an important organic molecule that is produced in excess during anaerobic metabolism when oxygen is absent in the human organism. The concentration of this substance in the body can be related to several medical conditions, such as hemorrhage, respiratory failure, and ischemia. Herein, we describe a graphene-based lactate biosensor to detect the concentrations of L-lactic acid in different fluids (buffer solution and plasma). The active surface (graphene) of the device was functionalized with lactate dehydrogenase enzyme using different substances (Nafion, chitosan, and glutaraldehyde) to guarantee stability and increase selectivity. The devices presented linear responses for the concentration ranges tested in the different fluids. An interference study was performed using ascorbic acid, uric acid, and glucose, and there was a minimum variation in the Dirac point voltage during detection of lactate in any of the samples. The stability of the devices was verified at up to 50 days while kept in a dry box at room temperature, and device operation was stable until 12 days. This study demonstrated graphene performance to monitor L-lactic acid production in human samples, indicating that this material can be implemented in more simple and low-cost devices, such as flexible sensors, for point-of-care applications.
Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer’s Detection
Monitoring the progression of Alzheimer’s disease (AD) is crucial for mitigating dementia symptoms, alleviating pain, and improving mobility. Traditionally, AD biomarkers like amyloid plaques are predominantly identified in cerebrospinal fluid (CSF) due to their concentrated presence. However, detecting these markers in blood is hindered by the blood–brain barrier (BBB), resulting in lower concentrations. To address this challenge and identify pertinent AD biomarkers—specifically amyloid plaques and apolipoprotein E4 (ApoE4)—in blood plasma, we propose an innovative approach. This involves enhancing a screen-printed carbon electrode (SPCE) with an immobilization matrix comprising gold nanostars (AuNSs) coated with chitosan. Morphological and electrical analyses confirmed superior dispersion and conductivity with 0.5% chitosan, supported by UV–Vis spectroscopy, cyclic voltammetry, and Nyquist plots. Subsequent clinical assays measured electrical responses to quantify amyloid-β 42 (Aβ42) (15.63–1000 pg/mL) and APoE4 levels (0.41 to 40 ng/mL) in human blood plasma samples. Differential pulse voltammetry (DPV) responses exhibited peak currents proportional to biomarker concentrations, demonstrating high linear correlations (0.985 for Aβ42 and 0.919 for APoE4) with minimal error bars. Cross-reactivity tests with mixed solutions of amyloid-β 40 (Aβ40), Aβ42, and ApoE4 indicated minimal interference between biomarkers (<3% variation), further confirming the high specificity of the developed sensor. Validation studies demonstrated a strong concurrence with the gold-standard enzyme-linked immunosorbent assay (ELISA), while interference tests indicated a minimal variation in peak currents. This improved device presents promising potential as a point-of-care system, offering a less invasive, cost-effective, and simplified approach to detecting and tracking the progression of AD. The substantial surface binding area further supports the efficacy of our method, offering a promising avenue for advancing AD diagnostics.