Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,042 result(s) for "Kim, Sara S."
Sort by:
Use of m-Health in polio eradication and other immunization activities in developing countries
•We evaluated mHealth in immunization programs in low & lower middle income countries.•We searched PubMed for peer reviewed articles, and 26 articles were deemed eligible.•mHealth was used for reminder, surveillance, campaign planning, & vaccine acceptance.•80.8% of studies found that mHealth improved vaccine coverage. Reaching the children that are chronically missed by routine immunization services has been a key pillar of success in achieving progress toward polio eradication. The rapid advancement and accessibility of mobile technology (“mHealth”) in low and lower middle income countries provides an important opportunity to apply novel, innovative approaches to provide vaccine services. We sought to document the use and effectiveness of mHealth in immunization programs in low and lower middle income countries. We particularly focused on mHealth approaches used in polio eradication efforts by the Global Polio Eradication Initiative (GPEI) to leverage the knowledge and lessons learned that may be relevant for enhancing ongoing immunization services. In June 2016, the electronic database PubMed was searched for peer reviewed studies that focused on efforts to improve immunization programs (both ongoing immunization services and supplemental immunization activities or campaigns) through mobile technology in low and lower middle income countries. The search yielded 317 papers of which 25 met the inclusion criteria. One additional article was included from the hand searching process. mHealth was used for reminder and recall, monitoring and surveillance, vaccine acceptance, and campaign strategic planning. Mobile phones were the most common mobile device used. Of the 26 studies, 21 of 26 studies (80.8%) reported that mHealth improved immunization efforts. mHealth interventions can effectively enhance immunization services in low and lower middle income countries. With the growing capacity and access to mobile technology, mHealth can be a powerful and sustainable tool for enhancing the reach and impact of vaccine programs.
Redirecting antibody responses from egg-adapted epitopes following repeat vaccination with recombinant or cell culture-based versus egg-based influenza vaccines
Repeat vaccination with egg-based influenza vaccines could preferentially boost antibodies targeting the egg-adapted epitopes and reduce immunogenicity to circulating viruses. In this randomized trial (Clinicaltrials.gov: NCT03722589), sera pre- and post-vaccination with quadrivalent inactivated egg-based (IIV4), cell culture-based (ccIIV4), and recombinant (RIV4) influenza vaccines were collected from healthcare personnel (18-64 years) in 2018−19 ( N  = 723) and 2019−20 ( N  = 684) influenza seasons. We performed an exploratory analysis. Vaccine egg-adapted changes had the most impact on A(H3N2) immunogenicity. In year 1, RIV4 induced higher neutralizing and total HA head binding antibodies to cell- A(H3N2) virus than ccIIV4 and IIV4. In year 2, among the 7 repeat vaccination arms (IIV4-IIV4, IIV4-ccIIV4, IIV4-RIV4, RIV4-ccIIV4, RIV4-RIV4, ccIIV4-ccIIV4 and ccIIV4-RIV4), repeat vaccination with either RIV4 or ccIIV4 further improved antibody responses to circulating viruses with decreased neutralizing antibody egg/cell ratio. RIV4 also had higher post-vaccination A(H1N1)pdm09 and A(H3N2) HA stalk antibodies in year 1, but there was no significant difference in HA stalk antibody fold rise among vaccine groups in either year 1 or year 2. Multiple seasons of non-egg-based vaccination may be needed to redirect antibody responses from immune memory to egg-adapted epitopes and re-focus the immune responses towards epitopes on the circulating viruses to improve vaccine effectiveness. Here the authors report an exploratory analysis of a clinical trial that tested different influenza virus vaccination platforms. The results show that multiple seasons of recombinant or cell-based influenza vaccinations may be needed to redirect antibody responses away from immune memory to egg-adapted epitopes and refocus on epitopes on the circulating viruses.
Personalized azithromycin treatment rules for children with watery diarrhea using machine learning
We use machine learning to identify innovative strategies to target azithromycin to the children with watery diarrhea who are most likely to benefit. Using data from a randomized trial of azithromycin for watery diarrhea (NCT03130114), we develop personalized treatment rules given sets of diagnostic, child, and clinical characteristics, employing a robust ensemble machine learning-based procedure. This procedure estimates the child-level expected benefit for a given set of covariates by combining predictions from a library of statistical models. For each rule, we estimate the proportion treated under the rule and the average benefits of treatment. Among 6692 children, treatment under the most comprehensive rule is recommended on average for one third of children. The risk of diarrhea on day 3 is 10.1% lower (95% CI: 5.4, 14.9) with azithromycin compared to placebo among children recommended for treatment (NNT: 10). For day 90 re-hospitalization and death, risk is 2.4% lower (95% CI: 0.6, 4.1; NNT: 42). While pathogen diagnostics are strong determinants of azithromycin effects on diarrhea duration, host characteristics may better predict benefits for re-hospitalization or death. This suggests that targeting antibiotic treatment for severe outcomes among children with watery diarrhea may be possible without access to pathogen diagnostics. Pathogen diagnostics are strong determinants of azithromycin effects on diarrhea duration, but host factors may better predict benefits for severe outcomes. In this work, authors utilise a machine learning-based approach to evaluate personalized rules for the decision to treat watery diarrhea with azithromycin.
Social Contact Patterns in Rural and Urban Settings, Mozambique, 2021–2022
Few sources have reported empirical social contact data from resource-poor settings. To address this shortfall, we recruited 1,363 participants from rural and urban areas of Mozambique during the COVID-19 pandemic, determining age, sex, and relation to the contact for each person. Participants reported a mean of 8.3 (95% CI 8.0-8.6) contacts per person. The mean contact rates were higher in the rural site compared with the urban site (9.8 vs 6.8; p<0.01). Using mathematical models, we noted higher vaccine effects in the rural site when comparing empirical (32%) with synthetic (29%) contact matrices and lower corresponding vaccine effects in the urban site (32% vs 35%). Those effects were prominent in younger (0-9 years) and older (≥60 years) persons. Our work highlights the importance of empirical data, showing differences in contact rates and patterns between rural and urban sites in Mozambique and their nonnegligible effects in modeling potential effects of vaccine interventions.
A randomized controlled trial of antibody response to 2019–20 cell-based inactivated and egg-based live attenuated influenza vaccines in children and young adults
Hemagglutination inhibition (HAI) titers to the live-attenuated influenza vaccine (LAIV4) are typically lower than its counterpart egg-based inactivated influenza vaccines (IIV). Similar comparisons have not been made between LAIV4 and the 4-strain, cell-culture inactivated influenza vaccine (ccIIV4). We compared healthy children’s and young adults’ HAI titers against the 2019–2020 LAIV4 and ccIIV4. Participants aged 4–21 years were randomized 1:1 to receive ccIIV4 (n = 100) or LAIV4 (n = 98). Blood was drawn prevaccination and on day 28 (21–35) post vaccination. HAI assays against egg-grown A/H1N1, A/H3N2, both vaccine B strains and cell-grown A/H3N2 antigens were conducted. Primary outcomes were geometric mean titers (GMT) and geometric mean fold rise (GMFR) in titers. GMTs to A/H1N1, A/H3N2 and B/Victoria increased following both ccIIV and LAIV and to B/Yamagata following ccIIV (p < 0.05). The GMFR range was 2.4–3.0 times higher for ccIIV4 than for LAIV4 (p < 0.001). Within vaccine types, egg-grown A/H3N2 GMTs were higher (p < 0.05) than cell-grown GMTs [ccIIV4 day 28: egg = 205 (95% CI: 178–237); cell = 136 (95% CI:113–165); LAIV4 day 28: egg = 96 (95% CI: 83–112); cell = 63 (95% CI: 58–74)]. The GMFR to A/H3N2 cell-grown and egg-grown antigens were similar. Pre-vaccination titers inversely predicted GMFR. The HAI response to ccIIV4 was greater than LAIV4 in this study of mostly older children, and day 0 HAI titers inversely predicted GMFR for both vaccines. Lower prevaccination titers were associated with greater GMFR in both vaccine groups.
Interim Estimates of 2018–19 Seasonal Influenza Vaccine Effectiveness — United States, February 2019
In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months (https://www.cdc.gov/flu/protect/whoshouldvax.htm). Effectiveness of seasonal influenza vaccine varies by season. During each influenza season since 2004-05, CDC has estimated the effectiveness of seasonal influenza vaccine to prevent laboratory-confirmed influenza associated with medically attended acute respiratory illness (ARI). This interim report uses data from 3,254 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (U.S. Flu VE Network) during November 23, 2018-February 2, 2019. During this period, overall adjusted vaccine effectiveness against all influenza virus infection associated with medically attended ARI was 47% (95% confidence interval [CI] = 34%-57%). For children aged 6 months-17 years, overall vaccine effectiveness was 61% (44%-73%). Seventy-four percent of influenza A infections for which subtype information was available were caused by A(H1N1)pdm09 viruses. Vaccine effectiveness was estimated to be 46% (30%-58%) against illness caused by influenza A(H1N1)pdm09 viruses. CDC recommends that health care providers continue to administer influenza vaccine because influenza activity is ongoing and the vaccine can still prevent illness, hospitalization, and death associated with currently circulating influenza viruses, or other influenza viruses that might circulate later in the season. During the 2017-18 influenza season, in which influenza A(H3N2) predominated, vaccination was estimated to prevent 7.1 million illnesses, 3.7 million medical visits, 109,000 hospitalizations, and 8,000 deaths (1). Vaccination can also reduce the severity of influenza-associated illness (2). Persons aged ≥6 months who have not yet been vaccinated this season should be vaccinated.
Factors associated with humoral immune response in older adults who received egg-free influenza vaccine
•Age and baseline HAI titers were associated with immune response to egg-free influenza vaccine.•HAI response differed by antigen level contained in prior season’s influenza vaccine.•The ideal sequence of vaccine formulations across influenza seasons remains unknown. Immune responses to influenza vaccination tend to be lower among older, frequently vaccinated adults. Use of egg-free influenza vaccines is increasing, but limited data exist on factors associated with their immunogenicity in older adults. Community-dwelling older adults ≥ 56 years of age were enrolled in a prospective, observational study of immunogenicity of 2018–2019 influenza vaccine. Hemagglutination inhibition (HAI) antibody titers were measured pre-vaccination (Day 0) and four weeks after vaccination (Day 28) to calculate geometric mean titers, seropositivity (HAI titers ≥ 1:40), seroconversion (fourfold rise in HAI titer with post-vaccination titer ≥ 1:40) and geometric mean fold rise (GMFR). Linear regression models assessed the association of predictors of GMFR for each vaccine antigen. Among 91 participants who received egg-free influenza vaccines, 84 (92.3 %) received quadrivalent recombinant influenza vaccine (RIV4, Flublok, Sanofi Pasteur), and 7 (7.7 %) received quadrivalent cell culture-based influenza vaccine (ccIIV4, Flucelvax, Seqirus). Pre-vaccination seropositivity was 52.8 % for A(H1N1), 94.5 % for A(H3N2), 61.5 % for B/Colorado and 48.4 % for B/Phuket. Seroconversion by antigen ranged from 16.5 % for A(H1N1) and B/Colorado to 37.4 % for A(H3N2); 40 participants failed to seroconvert to any antigen. Factors independently associated with higher GMFR in multivariable models included lower pre-vaccination HAI antibody titer for A(H1N1), B/Colorado and B/Phuket, and younger age for A(H1N1). Overall pre-vaccination seropositivity was high and just over half of the cohort seroconverted to ≥ 1 vaccine antigen. Antibody responses were highest among participants with lower pre-vaccination titers. Among older adults with high pre-existing antibody titers, approaches to improve immune responses are needed.
Characterizing social behavior relevant for infectious disease transmission in four low- and middle-income countries, 2021-2023
Infectious diseases account for nearly half of all child mortality worldwide, with most of the burden concentrated in low and middle-income countries (LMIC). Person-to-person interactions, or ‘contacts’, facilitate the spread of respiratory and enteric pathogens. The number and nature of contacts likely vary across countries along with social and cultural norms, but few studies have compared behaviors across countries and none have done so with a focus on children. Here we present data from a population-based study conducted from 2021 to 2023 in Guatemala, India, Mozambique, and Pakistan. Across four countries, 5085 participants reported a total of 84,829 contacts across two days. Mean contact rates were highest among 10- to 19-year-olds except in Pakistan, where contacts were highest among 5- to 9-year-olds. Non-home locations which presented high risk for transmission were schools in India, workplaces in Pakistan, and ‘other’ social / leisure locations in Mozambique and Guatemala. Among children under 5 years of age, the proportion of contacts with non-household members was highest in Mozambique and lowest in India; most of these were reported at home. Contact patterns by age diverge from prior projections that are extrapolated from contact data from high-income countries, underscoring the value of local data collection. Social contact data are important for modelling epidemic transmission dynamics but limited data are available for lower- and middle-income countries. Here, the authors present social contact data in Guatemala, India, Mozambique and Pakistan collected in 2021-2023.
Influenza vaccination coverage among persons seeking outpatient medical care for acute respiratory illness in five states in the United States, 2011–2012 through 2018–2019
•Between 2011 and 2019, influenza vaccination coverage among US outpatients was ~55%.•Influenza vaccination coverage was lower than national targets of 70%.•Coverage was highest among adults older than 65 years and children aged <5 years.•Coverage was lowest among persons aged 13–49 years. In the United States (U.S.), annual influenza vaccination has been recommended for all persons aged ≥6 months with the Healthy People 2020 coverage target of 70%. However, vaccination coverage has remained around 42–49% during the past eight influenza seasons. We sought to quantify influenza vaccination coverage and factors associated with vaccination in persons seeking outpatient medical care for an acute respiratory illness (ARI). We enrolled outpatients aged ≥6 months with ARI from >50 U.S. clinics from 2011 to 2012 through 2018–2019 influenza seasons and tested for influenza with molecular assays. Vaccination status was based on documented receipt of the current season’s influenza vaccine. We estimated vaccination coverage among influenza-negative study participants by study site, age, and season, and compared to state-level influenza coverage estimates in the general population based on annual immunization surveys. We used multivariable logistic regression to examine factors independently associated with receipt of influenza vaccines. We enrolled 45,424 study participants with ARI who tested negative for influenza during the study period. Annual vaccination coverage among influenza-negative ARI patients and the general population in the participating states averaged 55% (range: 47–62%), and 52% (range: 46–54%), respectively. Among enrollees, coverage was highest among adults aged ≥65 years (82%; range, 80–85%) and lowest among adolescents aged 13–17 years (38%; range, 35–41%). Factors significantly associated with non-vaccination included non-White race, no college degree, exposure to cigarette smoke, absence of high-risk conditions, and not receiving prior season influenza vaccine. Influenza vaccination coverage over eight seasons among outpatients with non-influenza respiratory illness was slightly higher than coverage in the general population but 15% lower than national targets. Increased efforts to promote vaccination especially in groups with lower coverage are warranted to attain optimal health benefits of influenza vaccine.