Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,242 result(s) for "King, Peter J"
Sort by:
Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency
Adrian Clark and colleagues report mutations in the NNT gene encoding nicotinamide nucleotide transhydrogenase in familial glucocorticoid deficiency (FGD). Using targeted exome sequencing, we identified mutations in NNT , an antioxidant defense gene, in individuals with familial glucocorticoid deficiency. In mice with Nnt loss, higher levels of adrenocortical cell apoptosis and impaired glucocorticoid production were observed. NNT knockdown in a human adrenocortical cell line resulted in impaired redox potential and increased reactive oxygen species (ROS) levels. Our results suggest that NNT may have a role in ROS detoxification in human adrenal glands.
Targeting of EGFR by a combination of antibodies mediates unconventional EGFR trafficking and degradation
Antibody combinations targeting cell surface receptors are a new modality of cancer therapy. The trafficking and signalling mechanisms regulated by such therapeutics are not fully understood but could underlie differential tumour responses. We explored EGFR trafficking upon treatment with the antibody combination Sym004 which has shown promise clinically. Sym004 promoted EGFR endocytosis distinctly from EGF: it was asynchronous, not accompanied by canonical signalling events and involved EGFR clustering within detergent-insoluble plasma mebrane-associated tubules. Sym004 induced lysosomal degradation independently of EGFR ubiquitylation but dependent upon Hrs/Tsg101 that are required for the formation of intraluminal vesicles (ILVs) within late endosomes. We propose Sym004 cross-links EGFR physically triggering EGFR endocytosis and incorporation onto ILVs and so Sym004 sensitivity correlates with EGFR numbers available for binding, rather than specific signalling events. Consistently Sym004 efficacy and potentiation of cisplatin responses correlated with EGFR surface expression in head and neck cancer cells. These findings will have implications in understanding the mode of action of this new class of cancer therapeutics.
N-SREBP2 Provides a Mechanism for Dynamic Control of Cellular Cholesterol Homeostasis
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells. Unexpectedly, we found that the transcriptionally active fragment of SREBP2 (N-SREBP2) was produced constitutively. Moreover, in the absence of an exogenous cholesterol supply, nuclear N-SREBP2 became resistant to proteasome-mediated degradation. This resistance was paired with increased occupancy at the HMGCR promoter and HMGCR expression. Inhibiting nuclear N-SREBP2 degradation did not increase HMGCR RNA levels; this increase required cholesterol depletion. Our findings, combined with previous physiological and biophysical investigations, suggest a new model of SREBP2-mediated regulation of cholesterol biosynthesis in the organ that handles large and rapid fluctuations in the dietary supply of this key lipid. Specifically, in the nucleus, cholesterol and the ubiquitin–proteasome system provide a short-loop system that modulates the rate of cholesterol biosynthesis via regulation of nuclear N-SREBP2 turnover and HMGCR expression. Our findings have important implications for maintaining cellular cholesterol homeostasis and lowering blood cholesterol via the SREBP2-HMGCR axis.
Co-Occurrence of Domestic Dogs and Gastropod Molluscs in Public Dog-Walking Spaces and Implications for Infection with Angiostrongylus vasorum: A Preliminary Study
Angiostrongylusvasorum is a helminth parasite of domestic dogs that is increasing in range and prevalence. Its lifecycle requires terrestrial gastropod mollusc (“gastropod”) intermediate hosts, but research is lacking regarding contact risk in situ. We studied co-occurrence between dogs and gastropods in dog-walking spaces in an A. vasorum hotspot in southern England, United Kingdom, with the aim of quantifying environmental and spatio-temporal overlap. We surveyed 390 quadrats and 180 point-counts along 3 km transects at seven sites, yielding 1672 gastropod and 763 dog observations. Common gastropods comprised Arion, Cornu, Monacha, Deroceras, Tandonia, Cochlicella, and Trochulus species. Habitat was the most important factor structuring both gastropod and dog presence and abundance. Likelihood ratio comparisons from conditional probability trees revealed that dogs were 15× more likely to be present on hardstanding surfaces than other habitats but were also present on natural and amenity grassland. Presence of gastropod species associated with high A. vasorum prevalence was 65.12× more likely in woodland/scrub and 62.17× more likely in amenity grassland than other habitats. For gastropods overall, high abundance was 5.82× more likely in woodland/scrub and natural grassland. The findings suggest co-occurrence is highest in amenity and natural grassland, but infection risk is greatest in amenity grassland and woodland/scrub.
MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans
An interesting variant of familial glucocorticoid deficiency (FGD), an autosomal recessive form of adrenal failure, exists in a genetically isolated Irish population. In addition to hypocortisolemia, affected children show signs of growth failure, increased chromosomal breakage, and NK cell deficiency. Targeted exome sequencing in 8 patients identified a variant (c.71-1insG) in minichromosome maintenance-deficient 4 (MCM4) that was predicted to result in a severely truncated protein (p.Pro24ArgfsX4). Western blotting of patient samples revealed that the major 96-kDa isoform present in unaffected human controls was absent, while the presence of the minor 85-kDa isoform was preserved. Interestingly, histological studies with Mcm4-depleted mice showed grossly abnormal adrenal morphology that was characterized by non-steroidogenic GATA4- and Gli1-positive cells within the steroidogenic cortex, which reduced the number of steroidogenic cells in the zona fasciculata of the adrenal cortex. Since MCM4 is one part of a MCM2-7 complex recently confirmed as the replicative helicase essential for normal DNA replication and genome stability in all eukaryotes, it is possible that our patients may have an increased risk of neoplastic change. In summary, we have identified what we believe to be the first human mutation in MCM4 and have shown that it is associated with adrenal insufficiency, short stature, and NK cell deficiency.
Somatic mutations of CADM1 in aldosterone-producing adenomas and gap junction-dependent regulation of aldosterone production
Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1 . Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n  = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production. Recurrent somatic mutations altering residues in the transmembrane domain of CADM1 are identified in aldosterone-producing adenomas. Follow-up studies implicate a role of gap junction communication in regulating aldosterone production.
Kisspeptin Is a Novel Regulator of Human Fetal Adrenocortical Development and Function: A Finding With Important Implications for the Human Fetoplacental Unit
ContextThe human fetal adrenal (HFA) is an integral component of the fetoplacental unit and important for the maintenance of pregnancy. Low kisspeptin levels during pregnancy are associated with miscarriage, and kisspeptin and its receptor are expressed in the HFA. However, the role of kisspeptin in fetal adrenal function remains unknown.ObjectiveTo determine the role of kisspeptin in the developing HFA.DesignExperiments using H295R and primary HFA cells as in vitro models of the fetal adrenal. Association of plasma kisspeptin levels with HFA size in a longitudinal clinical study.SettingAcademic research center and tertiary fetal medicine unit.ParticipantsThirty-three healthy pregnant women were recruited at their 12-week routine antenatal ultrasound scan.Main Outcome MeasuresThe spatiotemporal expression of Kiss1R in the HFA. The production of dehydroepiandrosterone sulfate (DHEAS) from HFA cells after kisspeptin treatment, alone or in combination with adrenocorticotropic hormone or corticotropin-releasing hormone. Fetal adrenal volume (FAV) and kisspeptin levels at four antenatal visits (∼20, 28, 34, and 38 weeks’ gestation).ResultsExpression of Kiss1R was present in the HFA from 8 weeks after conception to term and was shown in the inner fetal zone. Kisspeptin significantly increased DHEAS production in H295R and second-trimester HFA cells. Serial measurements of kisspeptin confirmed a correlation with FAV growth in the second trimester, independent of sex or estimated fetal weight.ConclusionsKisspeptin plays a key role in the regulation of the HFA and thus the fetoplacental unit, particularly in the second trimester of pregnancy.Kisspeptin is a regulator of human fetal adrenocortical development and function. This finding suggests an important role for kisspeptin in the human feto-placental unit and maintenance of pregnancy.
Genetic structure of regional water vole populations and footprints of reintroductions: a case study from southeast England
An important consideration when implementing species management is preserving genetic variation, which is fundamental to the long-term persistence of populations and adaptive potential of the species. The European water vole Arvicola amphibius is of high conservation importance in the United Kingdom due to its documented decline in both distribution and abundance. Conservation strategies for this species include protecting source populations, increasing habitat availability and connectivity, non-native predator control and reintroduction. We used mtDNA control region sequences and eight microsatellite markers from samples collected from 12 localities in southeast England, to determine how genetic variation is structured amongst regional water vole populations and to what extent population structure has been influenced by reintroductions. We found high haplotype diversity (h) across native populations in the southeast region and evidence that divergent lineages had been introduced to the region. We detected significant structure between watersheds with mtDNA from native populations and evidence of finer scale structure between populations within watersheds with both mtDNA and microsatellites. We suggest that management strategies should aim to conserve genetic diversity at a population level and that watersheds are a practicable unit for prioritising management within regions. We propose that introductions to restore or augment water voles within watersheds should consider the genetic composition of regional populations and highlight that genetic data has an important role in guiding future conservation options that secure adaptive potential in the face of future environmental change.
A Model for Small Heat Shock Protein Inhibition of Polyglutamine Aggregation
Polyglutamine (polyQ) repeat expansions that lead to the formation of amyloid aggregates are linked to several devastating neurodegenerative disorders. While molecular chaperones, including the small heat shock proteins (sHsp), play an important role in protection against protein misfolding, the aberrant protein folding that accompanies these polyQ diseases overwhelms the chaperone network. By generating a model structure to explain the observed suppression of spinocerebellar ataxia 3 (SCA3) by the sHsp αB-crystallin, we have identified key vulnerabilities that provide a possible mechanism to explain this heat shock response. A docking study involving a small bioactive peptide should also aid in the development of new drug targets for the prevention of polyQ-based aggregation.
No Plaything: Ethical Issues concerning Child-Pornography
Academic discussion of pornography is generally restricted to issues arising from the depiction of adults. I argue that child-pornography is a more complex matter, and that generally accepted moral judgements concerning pornography in general have to be revised when children are involved. I look at the question of harm to the children involved, the consumers, and society in general, at the question of blame, and at the possibility of a morally acceptable form of child-pornography. My approach involves an objectivist metaethics and a utilitarian view of practical ethics, and I bring out the advantages of these theories to the consideration of moral issues such as this one.