Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Kinoshita, Atsuko"
Sort by:
Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications
Integration of environmental and endogenous cues at plant shoot meristems determines the timing of flowering and reproductive development. The MADS box transcription factor FLOWERING LOCUS C (FLC) of Arabidopsis thaliana is an important repressor of floral transition, which blocks flowering until plants are exposed to winter cold. However, the target genes of FLC have not been thoroughly described, and our understanding of the mechanisms by which FLC represses transcription of these targets and how this repression is overcome during floral transition is still fragmentary. Here, we identify and characterize TARGET OF FLC AND SVP1 (TFS1), a novel target gene of FLC and its interacting protein SHORT VEGETATIVE PHASE (SVP). TFS1 encodes a B3-type transcription factor, and we show that tfs1 mutants are later flowering than wild-type, particularly under short days. FLC and SVP repress TFS1 transcription leading to deposition of trimethylation of Iysine 27 of histone 3 (H3K27me3) by the Polycomb Repressive Complex 2 at the TFS1 locus. During floral transition, after downregulation of FLC by cold, TFS1 transcription is promoted by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a MADS box protein encoded by another target of FLC/SVP. SOC1 opposes PRC function at TFS1 through recruitment of the histone demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) and the SWI/SNF chromatin remodeler ATPase BRAHMA (BRM). This recruitment of BRM is also strictly required for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) binding at TFS1 to coordinate RNAPII recruitment through the Mediator complex. Thus, we show that antagonistic chromatin modifications mediated by different MADS box transcription factor complexes play a crucial role in defining the temporal and spatial patterns of transcription of genes within a network of interactions downstream of FLC/SVP during floral transition.
The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana
Background Floral transition initiates reproductive development of plants and occurs in response to environmental and endogenous signals. In Arabidopsis thaliana , this process is accelerated by several environmental cues, including exposure to long days. The photoperiod-dependent promotion of flowering involves the transcriptional induction of FLOWERING LOCUS T ( FT ) in the phloem of the leaf. FT encodes a mobile protein that is transported from the leaves to the shoot apical meristem, where it forms part of a regulatory complex that induces flowering. Whether FT also has biological functions in leaves of wild-type plants remains unclear. Results In order to address this issue, we first studied the leaf transcriptomic changes associated with FT overexpression in the companion cells of the phloem. We found that FT induces the transcription of SWEET10 , which encodes a bidirectional sucrose transporter, specifically in the leaf veins. Moreover, SWEET10 is transcriptionally activated by long photoperiods, and this activation depends on FT and one of its earliest target genes SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 ( SOC1 ). The ectopic expression of SWEET10 causes early flowering and leads to higher levels of transcription of flowering-time related genes in the shoot apex. Conclusions Collectively, our results suggest that the FT-signaling pathway activates the transcription of a sucrose uptake/efflux carrier during floral transition, indicating that it alters the metabolism of flowering plants as well as reprogramming the transcription of floral regulators in the shoot meristem.
BAM 1 and RECEPTOR‐LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide‐triggered growth inhibition in Arabidopsis root
Ligand receptor‐based signaling is a means of cell‐to‐cell communication for coordinating developmental and physiological processes in multicellular organisms. In plants, cell‐producing meristems utilize this signaling to regulate their activities and ensure for proper development. Shoot and root systems share common requirements for carrying out this process; however, its molecular basis is largely unclear. It has been suggested that synthetic CLV3/EMBRYO SURROUNDING REGION (CLE) peptide shrinks the root meristem through the actions of CLAVATA2 (CLV2) and the RECEPTOR‐LIKE PROTEIN KINASE 2 (RPK2) pathway in Arabidopsis thaliana. Our genetic screening for mutations that resist CLE peptide signaling in roots determined that BAM1, which is a member of the leucine‐rich repeat receptor‐like kinase (LRR‐RLK) family, is also involved in this pathway. BAM1 is preferentially expressed in the root tip, including the quiescent center and its surrounding stem cells. Our genetic analysis revealed that BAM1 functions together with RPK2. Using coimmunoprecipitation assay, we showed that BAM1 is capable of forming heteromeric complexes with RPK2. These findings suggest that the BAM1 and RPK2 receptors constitute a signaling pathway that modulates cell proliferation in the root meristem and that related molecules are employed in root and shoot meristems.
Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana . Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Temperature-dependent fasciation mutants provide a link between mitochondrial RNA processing and lateral root morphogenesis
Although mechanisms that activate organogenesis in plants are well established, much less is known about the subsequent fine-tuning of cell proliferation, which is crucial for creating properly structured and sized organs. Here we show, through analysis of temperature-dependent fasciation (TDF) mutants of Arabidopsis, root redifferentiation defective 1 ( rrd1 ), rrd2 , and root initiation defective 4 ( rid4 ), that mitochondrial RNA processing is required for limiting cell division during early lateral root (LR) organogenesis. These mutants formed abnormally broadened (i.e. fasciated) LRs under high-temperature conditions due to extra cell division. All TDF proteins localized to mitochondria, where they were found to participate in RNA processing: RRD1 in mRNA deadenylation, and RRD2 and RID4 in mRNA editing. Further analysis suggested that LR fasciation in the TDF mutants is triggered by reactive oxygen species generation caused by defective mitochondrial respiration. Our findings provide novel clues for the physiological significance of mitochondrial activities in plant organogenesis.
Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUS-CLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species.
A Plant Peptide Encoded by CLV3 Identified by in situ MALDI-TOF MS Analysis
The Arabidopsis CLAVATA3 (CLV3) gene encodes a stem cell-specific protein presumed to be a precursor of a secreted peptide hormone. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) applied to in situ Arabidopsis tissues determined the structure of a modified 12-amino acid peptide (MCLV3), which was derived from a conserved motif in the CLV3 sequence. Synthetic MCLV3 induced shoot and root meristem consumption as cells differentiated into other organs, displaying the typical phenotype of transgenic plants overexpressing CLV3. These results suggest that the functional peptide of CLV3 is MCLV3.
BAM 1 and RECEPTOR ‐ LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide‐triggered growth inhibition in A rabidopsis root
Ligand receptor‐based signaling is a means of cell‐to‐cell communication for coordinating developmental and physiological processes in multicellular organisms. In plants, cell‐producing meristems utilize this signaling to regulate their activities and ensure for proper development. Shoot and root systems share common requirements for carrying out this process; however, its molecular basis is largely unclear. It has been suggested that synthetic CLV 3/ EMBRYO SURROUNDING REGION ( CLE ) peptide shrinks the root meristem through the actions of CLAVATA 2 ( CLV 2 ) and the RECEPTOR ‐ LIKE PROTEIN KINASE 2 ( RPK 2 ) pathway in Arabidopsis thaliana . Our genetic screening for mutations that resist CLE peptide signaling in roots determined that BAM 1, which is a member of the leucine‐rich repeat receptor‐like kinase ( LRR ‐ RLK ) family, is also involved in this pathway. BAM 1 is preferentially expressed in the root tip, including the quiescent center and its surrounding stem cells. Our genetic analysis revealed that BAM 1 functions together with RPK 2. Using coimmunoprecipitation assay, we showed that BAM 1 is capable of forming heteromeric complexes with RPK 2. These findings suggest that the BAM 1 and RPK 2 receptors constitute a signaling pathway that modulates cell proliferation in the root meristem and that related molecules are employed in root and shoot meristems.
Temperature-dependent fasciation mutants connect mitochondrial RNA processing to control of lateral root morphogenesis
Abstract Although mechanisms that activate organogenesis in plants are well established, much less is known about the subsequent fine-tuning of cell proliferation, which is crucial for creating properly structured and sized organs. Here we show, through analysis of temperature-dependent fasciation (TDF) mutants of Arabidopsis, root redifferentiation defective 1 (rrd1), rrd2, and root initiation defective 4 (rid4), that mitochondrial RNA processing is required for limiting cell division during early lateral root (LR) organogenesis. These mutants formed abnormally broadened (i.e., fasciated) LRs under high-temperature conditions due to excessive cell division. All TDF proteins localized to mitochondria, where they were found to participate in RNA processing: RRD1 in mRNA deadenylation, and RRD2 and RID4 in mRNA editing. Further analysis suggested that LR fasciation in the TDF mutants is triggered by reactive oxygen species generation caused by defective mitochondrial respiration. Our findings provide novel clues for the physiological significance of mitochondrial activities in plant organogenesis. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34595
Land shortage stymies shop scheme
The system calls for municipalities to find vacant properties, where the Organization for Small and Medium Enterprises and Regional Innovation will then build prefabricated facilities to be loaned to local business operators for no charge. An official of the city government's commercial, industrial and tourism affairs division said: We've got a full plate as it is, searching for land where we can build temporary housing units.