Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Kinyanjui, Timothy M"
Sort by:
Defining the vaccination window for respiratory syncytial virus (RSV) using age-seroprevalence data for children in Kilifi, Kenya
Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract disease in early life and a target for vaccine prevention. Data on the age-prevalence of RSV specific antibodies will inform on optimizing vaccine delivery. Archived plasma samples were randomly selected within age strata from 960 children less than 145 months of age admitted to Kilifi County Hospital pediatric wards between 2007 and 2010. Samples were tested for antibodies to RSV using crude virus IgG ELISA. Seroprevalence (and 95% confidence intervals) was estimated as the proportion of children with specific antibodies above a defined cut-off level. Nested catalytic models were used to explore different assumptions on antibody dynamics and estimate the rates of decay of RSV specific maternal antibody and acquisition of infection with age, and the average age of infection. RSV specific antibody prevalence was 100% at age 0-<1month, declining rapidly over the first 6 months of life, followed by an increase in the second half of the first year of life and beyond. Seroprevalence was lowest throughout the age range 5-11 months; all children were seropositive beyond 3 years of age. The best fit model to the data yielded estimates for the rate of infection of 0.78/person/year (95% CI 0.65-0.97) and 1.69/person/year (95% CI 1.27-2.04) for ages 0-<1 year and 1-<12 years, respectively. The rate of loss of maternal antibodies was estimated as 2.54/year (95% CI 2.30-2.90), i.e. mean duration 4.7 months. The mean age at primary infection was estimated at 15 months (95% CI 13-18). The rate of decay of maternal antibody prevalence and subsequent age-acquisition of infection are rapid, and the average age at primary infection early. The vaccination window is narrow, and suggests optimal targeting of vaccine to infants 5 months and above to achieve high seroconversion.
Vaccine Induced Herd Immunity for Control of Respiratory Syncytial Virus Disease in a Low-Income Country Setting
Respiratory syncytial virus (RSV) is globally ubiquitous, and infection during the first six months of life is a major risk for severe disease and hospital admission; consequently RSV is the most important viral cause of respiratory morbidity and mortality in young children. Development of vaccines for young infants is complicated by the presence of maternal antibodies and immunological immaturity, but vaccines targeted at older children avoid these problems. Vaccine development for young infants has been unsuccessful, but this is not the case for older children (> 6 m). Would vaccinating older children have a significant public health impact? We developed a mathematical model to explore the benefits of a vaccine against RSV. We have used a deterministic age structured model capturing the key epidemiological characteristics of RSV and performed a statistical maximum-likelihood fit to age-specific hospitalization data from a developing country setting. To explore the effects of vaccination under different mixing assumptions, we included two versions of contact matrices: one from a social contact diary study, and the second a synthesised construction based on demographic data. Vaccination is assumed to elicit an immune response equivalent to primary infection. Our results show that immunisation of young children (5-10 m) is likely to be a highly effective method of protection of infants (<6 m) against hospitalisation. The majority benefit is derived from indirect protection (herd immunity). A full sensitivity and uncertainty analysis using Latin Hypercube Sampling of the parameter space shows that our results are robust to model structure and model parameters. This result suggests that vaccinating older infants and children against RSV can have a major public health benefit.
Quantifying social contacts in a household setting of rural Kenya using wearable proximity sensors
Close proximity interactions between individuals influence how infections spread. Quantifying close contacts in developing world settings, where such data is sparse yet disease burden is high, can provide insights into the design of intervention strategies such as vaccination. Recent technological advances have enabled collection of time-resolved face-to-face human contact data using radio frequency proximity sensors. The acceptability and practicalities of using proximity devices within the developing country setting have not been investigated. We present and analyse data arising from a prospective study of 5 households in rural Kenya, followed through 3 consecutive days. Pre-study focus group discussions with key community groups were held. All residents of selected households carried wearable proximity sensors to collect data on their close (<1.5 metres) interactions. Data collection for residents of three of the 5 households was contemporaneous. Contact matrices and temporal networks for 75 individuals are defined and mixing patterns by age and time of day in household contacts determined. Our study demonstrates the stability of numbers and durations of contacts across days. The contact durations followed a broad distribution consistent with data from other settings. Contacts within households occur mainly among children and between children and adults, and are characterised by daily regular peaks in the morning, midday and evening. Inter-household contacts are between adults and more sporadic when measured over several days. Community feedback indicated privacy as a major concern especially regarding perceptions of non-participants, and that community acceptability required thorough explanation of study tools and procedures. Our results show for a low resource setting how wearable proximity sensors can be used to objectively collect high-resolution temporal data without direct supervision. The methodology appears acceptable in this population following adequate community engagement on study procedures. A target for future investigation is to determine the difference in contact networks within versus between households. We suggest that the results from this study may be used in the design of future studies using similar electronic devices targeting communities, including households and schools, in the developing world context.
Defining the vaccination window for respiratory syncytial virus
Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract disease in early life and a target for vaccine prevention. Data on the age-prevalence of RSV specific antibodies will inform on optimizing vaccine delivery. Archived plasma samples were randomly selected within age strata from 960 children less than 145 months of age admitted to Kilifi County Hospital pediatric wards between 2007 and 2010. Samples were tested for antibodies to RSV using crude virus IgG ELISA. Seroprevalence (and 95% confidence intervals) was estimated as the proportion of children with specific antibodies above a defined cut-off level. Nested catalytic models were used to explore different assumptions on antibody dynamics and estimate the rates of decay of RSV specific maternal antibody and acquisition of infection with age, and the average age of infection. RSV specific antibody prevalence was 100% at age 0-<1month, declining rapidly over the first 6 months of life, followed by an increase in the second half of the first year of life and beyond. Seroprevalence was lowest throughout the age range 5-11 months; all children were seropositive beyond 3 years of age. The best fit model to the data yielded estimates for the rate of infection of 0.78/person/year (95% CI 0.65-0.97) and 1.69/person/year (95% CI 1.27-2.04) for ages 0-<1 year and 1-<12 years, respectively. The rate of loss of maternal antibodies was estimated as 2.54/year (95% CI 2.30-2.90), i.e. mean duration 4.7 months. The mean age at primary infection was estimated at 15 months (95% CI 13-18). The rate of decay of maternal antibody prevalence and subsequent age-acquisition of infection are rapid, and the average age at primary infection early. The vaccination window is narrow, and suggests optimal targeting of vaccine to infants 5 months and above to achieve high seroconversion.
Vaccine Induced Herd Immunity for Control of Respiratory Syncytial Virus Disease in a Low-Income Country Setting: e0138018
Background Respiratory syncytial virus (RSV) is globally ubiquitous, and infection during the first six months of life is a major risk for severe disease and hospital admission; consequently RSV is the most important viral cause of respiratory morbidity and mortality in young children. Development of vaccines for young infants is complicated by the presence of maternal antibodies and immunological immaturity, but vaccines targeted at older children avoid these problems. Vaccine development for young infants has been unsuccessful, but this is not the case for older children (> 6m). Would vaccinating older children have a significant public health impact? We developed a mathematical model to explore the benefits of a vaccine against RSV. Methods and Findings We have used a deterministic age structured model capturing the key epidemiological characteristics of RSV and performed a statistical maximum-likelihood fit to age-specific hospitalization data from a developing country setting. To explore the effects of vaccination under different mixing assumptions, we included two versions of contact matrices: one from a social contact diary study, and the second a synthesised construction based on demographic data. Vaccination is assumed to elicit an immune response equivalent to primary infection. Our results show that immunisation of young children (5-10m) is likely to be a highly effective method of protection of infants (<6m) against hospitalisation. The majority benefit is derived from indirect protection (herd immunity). A full sensitivity and uncertainty analysis using Latin Hypercube Sampling of the parameter space shows that our results are robust to model structure and model parameters. Conclusions This result suggests that vaccinating older infants and children against RSV can have a major public health benefit.
KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal-Wallis H test for trend: < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65-0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines.
Estimating Skin Tone and Effects on Classification Performance in Dermatology Datasets
Recent advances in computer vision and deep learning have led to breakthroughs in the development of automated skin image analysis. In particular, skin cancer classification models have achieved performance higher than trained expert dermatologists. However, no attempt has been made to evaluate the consistency in performance of machine learning models across populations with varying skin tones. In this paper, we present an approach to estimate skin tone in benchmark skin disease datasets, and investigate whether model performance is dependent on this measure. Specifically, we use individual typology angle (ITA) to approximate skin tone in dermatology datasets. We look at the distribution of ITA values to better understand skin color representation in two benchmark datasets: 1) the ISIC 2018 Challenge dataset, a collection of dermoscopic images of skin lesions for the detection of skin cancer, and 2) the SD-198 dataset, a collection of clinical images capturing a wide variety of skin diseases. To estimate ITA, we first develop segmentation models to isolate non-diseased areas of skin. We find that the majority of the data in the the two datasets have ITA values between 34.5{\\deg} and 48{\\deg}, which are associated with lighter skin, and is consistent with under-representation of darker skinned populations in these datasets. We also find no measurable correlation between performance of machine learning model and ITA values, though more comprehensive data is needed for further validation.