Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Kinyoki, Damaris K."
Sort by:
The changing risk of Plasmodium falciparum malaria infection in Africa: 2000–10: a spatial and temporal analysis of transmission intensity
Over a decade ago, the Roll Back Malaria Partnership was launched, and since then there has been unprecedented investment in malaria control. We examined the change in malaria transmission intensity during the period 2000–10 in Africa. We assembled a geocoded and community Plasmodium falciparum parasite rate standardised to the age group 2–10 years (PfPR2–10) database from across 49 endemic countries and territories in Africa from surveys undertaken since 1980. The data were used within a Bayesian space–time geostatistical framework to predict PfPR2–10 in 2000 and 2010 at a 1 × 1 km spatial resolution. Population distribution maps at the same spatial resolution were used to compute populations at risk by endemicity class and estimate population-adjusted PfPR2–10 (PAPfPR2–10) for each of the 44 countries for which predictions were possible for each year. Between 2000 and 2010, the population in hyperendemic (>50% to 75% PfPR2–10) or holoendemic (>75% PfPR2–10) areas decreased from 218·6 million (34·4%) of 635·7 million to 183·5 million (22·5%) of 815·7 million across 44 malaria-endemic countries. 280·1 million (34·3%) people lived in areas of mesoendemic transmission (>10% to 50% PfPR2–10) in 2010 compared with 178·6 million (28·1%) in 2000. Population in areas of unstable or very low transmission (<5% PfPR2–10) increased from 131·7 million people (20·7%) in 2000 to 219·0 million (26·8%) in 2010. An estimated 217·6 million people, or 26·7% of the 2010 population, lived in areas where transmission had reduced by at least one PfPR2–10 endemicity class. 40 countries showed a reduction in national mean PAPfPR2–10. Only ten countries contributed 87·1% of the population living in areas of hyperendemic or holoendemic transmission in 2010. Substantial reductions in malaria transmission have been achieved in endemic countries in Africa over the period 2000–10. However, 57% of the population in 2010 continued to live in areas where transmission remains moderate to intense and global support to sustain and accelerate the reduction of transmission must remain a priority. Wellcome Trust.
Mapping child growth failure in Africa between 2000 and 2015
Insufficient growth during childhood is associated with poor health outcomes and an increased risk of death. Between 2000 and 2015, nearly all African countries demonstrated improvements for children under 5 years old for stunting, wasting, and underweight, the core components of child growth failure. Here we show that striking subnational heterogeneity in levels and trends of child growth remains. If current rates of progress are sustained, many areas of Africa will meet the World Health Organization Global Targets 2025 to improve maternal, infant and young child nutrition, but high levels of growth failure will persist across the Sahel. At these rates, much, if not all of the continent will fail to meet the Sustainable Development Goal target—to end malnutrition by 2030. Geospatial estimates of child growth failure provide a baseline for measuring progress as well as a precision public health platform to target interventions to those populations with the greatest need, in order to reduce health disparities and accelerate progress. Geospatial estimates of child growth failure in Africa provide a baseline for measuring progress and a precision public health platform to target interventions to those populations with the greatest need. Mapping Africa's path to prosperity The UN's Sustainable Development Goals set a range of targets to improve global health and prosperity. Their success will rely on high-quality data to assess current progress and needs on a local scale. Simon Hay and colleagues study data gathered at the finest spatial scale yet of child growth and educational attainment across 51 African countries. The data show the spatiotemporal progression of these measures between 2000 and 2015 and reveal geographical inequalities. The authors use Bayesian-model-based geospatial mapping to estimate the prevalence of multiple outcomes related to child growth failure and educational inequality on a 5 kilometre by 5 kilometre scale, enabling them to estimate where various targets related to nutrition and educational attainment are more or less likely to be met.
Predictors of the risk of malnutrition among children under the age of 5 years in Somalia
To investigate the predictors of wasting, stunting and low mid-upper arm circumference among children aged 6-59 months in Somalia using data from household cross-sectional surveys from 2007 to 2010 in order to help inform better targeting of nutritional interventions. Cross-sectional nutritional assessment surveys using structured interviews were conducted among communities in Somalia each year from 2007 to 2010. A two-stage cluster sampling methodology was used to select children aged 6-59 months from households across three livelihood zones (pastoral, agro-pastoral and riverine). Predictors of three anthropometric measures, weight-for-height (wasting), height-for-age (stunting) and mid-upper arm circumference, were analysed using Bayesian binomial regression, controlling for both spatial and temporal dependence in the data. The study was conducted in randomly sampled villages, representative of three livelihood zones in Somalia. Children between the ages of 6 and 59 months in Somalia. The estimated national prevalence of wasting, stunting and low mid-upper arm circumference in children aged 6-59 months was 21 %, 31 % and 36 %, respectively. Although fever, diarrhoea, sex and age of the child, household size and access to foods were significant predictors of malnutrition, the strongest association was observed between all three indicators of malnutrition and the enhanced vegetation index. A 1-unit increase in enhanced vegetation index was associated with a 38 %, 49 % and 59 % reduction in wasting, stunting and low mid-upper arm circumference, respectively. Infection and climatic variations are likely to be key drivers of malnutrition in Somalia. Better health data and close monitoring and forecasting of droughts may provide valuable information for nutritional intervention planning in Somalia.
Mapping male circumcision for HIV prevention efforts in sub-Saharan Africa
Background HIV remains the largest cause of disease burden among men and women of reproductive age in sub-Saharan Africa. Voluntary medical male circumcision (VMMC) reduces the risk of female-to-male transmission of HIV by 50–60%. The World Health Organization (WHO) and Joint United Nations Programme on HIV/AIDS (UNAIDS) identified 14 priority countries for VMMC campaigns and set a coverage goal of 80% for men ages 15–49. From 2008 to 2017, over 18 million VMMCs were reported in priority countries. Nonetheless, relatively little is known about local variation in male circumcision (MC) prevalence. Methods We analyzed geo-located MC prevalence data from 109 household surveys using a Bayesian geostatistical modeling framework to estimate adult MC prevalence and the number of circumcised and uncircumcised men aged 15–49 in 38 countries in sub-Saharan Africa at a 5 × 5-km resolution and among first administrative level (typically provinces or states) and second administrative level (typically districts or counties) units. Results We found striking within-country and between-country variation in MC prevalence; most (12 of 14) priority countries had more than a twofold difference between their first administrative level units with the highest and lowest estimated prevalence in 2017. Although estimated national MC prevalence increased in all priority countries with the onset of VMMC campaigns, seven priority countries contained both subnational areas where estimated MC prevalence increased and areas where estimated MC prevalence decreased after the initiation of VMMC campaigns. In 2017, only three priority countries (Ethiopia, Kenya, and Tanzania) were likely to have reached the MC coverage target of 80% at the national level, and no priority country was likely to have reached this goal in all subnational areas. Conclusions Despite MC prevalence increases in all priority countries since the onset of VMMC campaigns in 2008, MC prevalence remains below the 80% coverage target in most subnational areas and is highly variable. These mapped results provide an actionable tool for understanding local needs and informing VMMC interventions for maximum impact in the continued effort towards ending the HIV epidemic in sub-Saharan Africa.
Environmental predictors of stunting among children under-five in Somalia: cross-sectional studies from 2007 to 2010
Background Stunting among children under five years old is associated with long-term effects on cognitive development, school achievement, economic productivity in adulthood and maternal reproductive outcomes. Accurate estimation of stunting and tools to forecast risk are key to planning interventions. We estimated the prevalence and distribution of stunting among children under five years in Somalia from 2007 to 2010 and explored the role of environmental covariates in its forecasting. Methods Data from household nutritional surveys in Somalia from 2007 to 2010 with a total of 1,066 clusters covering 73,778 children were included. We developed a Bayesian hierarchical space-time model to forecast stunting by using the relationship between observed stunting and environmental covariates in the preceding years. We then applied the model coefficients to environmental covariates in subsequent years. To determine the accuracy of the forecasting, we compared this model with a model that used data from all the years with the corresponding environmental covariates. Results Rainfall (OR = 0.994, 95 % Credible interval (CrI): 0.993, 0.995) and vegetation cover (OR = 0.719, 95 % CrI: 0.603, 0.858) were significant in forecasting stunting. The difference in estimates of stunting using the two approaches was less than 3 % in all the regions for all forecast years. Conclusion Stunting in Somalia is spatially and temporally heterogeneous. Rainfall and vegetation are major drivers of these variations. The use of environmental covariates for forecasting of stunting is a potentially useful and affordable tool for planning interventions to reduce the high burden of malnutrition in Somalia.
Mapping exclusive breastfeeding in Africa between 2000 and 2017
Exclusive breastfeeding (EBF)—giving infants only breast-milk (and medications, oral rehydration salts and vitamins as needed) with no additional food or drink for their first six months of life—is one of the most effective strategies for preventing child mortality1–4. Despite these advantages, only 37% of infants under 6 months of age in Africa were exclusively breastfed in 20175, and the practice of EBF varies by population. Here, we present a fine-scale geospatial analysis of EBF prevalence and trends in 49 African countries from 2000–2017, providing policy-relevant administrative- and national-level estimates. Previous national-level analyses found that most countries will not meet the World Health Organization’s Global Nutrition Target of 50% EBF prevalence by 20256. Our analyses show that even fewer will achieve this ambition in all subnational areas. Our estimates provide the ability to visualize subnational EBF variability and identify populations in need of additional breastfeeding support.
Co-morbidity of malnutrition with falciparum malaria parasitaemia among children under the aged 6–59 months in Somalia: a geostatistical analysis
Background Malnutrition and malaria are both significant causes of morbidity and mortality in African children. However, the extent of their spatial comorbidity remains unexplored and an understanding of their spatial correlation structure would inform improvement of integrated interventions. We aimed to determine the spatial correlation between both wasting and low mid upper arm circumference (MUAC) and falciparum malaria among Somalian children aged 6–59 months. Methods Data were from 49 227 children living in 888 villages between 2007 to 2010. We developed a Bayesian geostatistical shared component model in order to determine the common spatial distributions of wasting and falciparum malaria; and low-MUAC and falciparum malaria at 1 × 1 km spatial resolution. Results The empirical correlations with malaria were 0.16 and 0.23 for wasting and low-MUAC respectively. Shared spatial residual effects were statistically significant for both wasting and low-MUAC. The posterior spatial relative risk was highest for low-MUAC and malaria (range: 0.19 to 5.40) and relatively lower between wasting and malaria (range: 0.11 to 3.55). Hotspots for both wasting and low-MUAC with malaria occurred in the South Central region in Somalia. Conclusions The findings demonstrate a relationship between nutritional status and falciparum malaria parasitaemia, and support the use of the relatively simpler MUAC measurement in surveys. Shared spatial distribution and distinct hotspots present opportunities for targeted seasonal chemoprophylaxis and other forms of malaria prevention integrated within nutrition programmes.
Assessing comorbidity and correlates of wasting and stunting among children in Somalia using cross-sectional household surveys: 2007 to 2010
ObjectiveWasting and stunting may occur together at the individual child level; however, their shared geographic distribution and correlates remain unexplored. Understanding shared and separate correlates may inform interventions. We aimed to assess the spatial codistribution of wasting, stunting and underweight and investigate their shared correlates among children aged 6–59 months in Somalia.SettingCross-sectional nutritional assessments surveys were conducted using structured interviews among communities in Somalia biannually from 2007 to 2010. A two-stage cluster sampling methodology was used to select children aged 6–59 months from households across three livelihood zones (pastoral, agropastoral and riverine). Using these data and environmental covariates, we implemented a multivariate spatial technique to estimate the codistribution and divergence of the risks and correlates of wasting and stunting at the 1×1 km spatial resolution.Participants73 778 children aged 6–59 months from 1066 survey clusters in Somalia.ResultsObserved pairwise child level empirical correlations were 0.30, 0.70 and 0.73 between weight-for-height and height-for-age; height-for-age and weight-for-age, and weight-for-height and weight-for-age, respectively. Access to foods with high protein content and vegetation cover, a proxy of rainfall or drought, were associated with lower risk of wasting and stunting. Age, gender, illness, access to carbohydrates and temperature were correlates of all three indicators. The spatial codistribution was highest between stunting and underweight with relative risk values ranging between 0.15 and 6.20, followed by wasting and underweight (range: 0.18–5.18) and lowest between wasting and stunting (range: 0.26–4.32).ConclusionsThe determinants of wasting and stunting are largely shared, but their correlation is relatively variable in space. Significant hotspots of different forms of malnutrition occurred in the South Central regions of the country. Although nutrition response in Somalia has traditionally focused on wasting rather than stunting, integrated programming and interventions can effectively target both conditions to alleviate common risk factors.
Publisher Correction: Mapping exclusive breastfeeding in Africa between 2000 and 2017
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Modelling the Ecological Comorbidity of Acute Respiratory Infection, Diarrhoea and Stunting among Children Under the Age of 5 Years in Somalia
The aim of this study was to assess spatial co-occurrence of acute respiratory infections (ARI), diarrhoea and stunting among children of the age between 6 and 59 months in Somalia. Data were obtained from routine biannual nutrition surveys conducted by the Food and Agriculture Organization 2007-2010. A Bayesian hierarchical geostatistical shared component model was fitted to the residual spatial components of the three health conditions. Risk maps of the common spatial effects at 1 × 1 km resolution were derived. The empirical correlations of the enumeration area proportion were 0.37, 0.63 and 0.66 for ARI and stunting, diarrhoea and stunting and ARI and diarrhoea, respectively. Spatially, the posterior residual effects ranged 0.03-20.98, 0.16-6.37 and 0.08-9.66 for shared component between ARI and stunting, diarrhoea and stunting and ARI and diarrhoea, respectively. The analysis showed clearly that the spatial shared component between ARI, diarrhoea and stunting was higher in the southern part of the country. Interventions aimed at controlling and mitigating the adverse effects of these three childhood health conditions should focus on their common putative risk factors, particularly in the South in Somalia.