Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24
result(s) for
"Kirillov, Nikolay"
Sort by:
Calibration of Digital Holographic Camera for Bubble Gas Volumetric Flux Measurements
2025
This study is aimed at developing and verifying a method that uses a digital holographic camera to measure the gas volumetric flux, which is relevant for the monitoring of gas emissions, in particular methane in the Arctic seas. The method is based on the analysis of histograms of cross-sectional areas of gas bubbles and their velocities obtained from holographic data. The result of the study is the determination of a constant calibration factor k = 2, taking into account the geometric factor of the camera and the deformation of the bubbles. The coefficient is determined in laboratory conditions, taking into account the area of the gas-generating site of a bubble generator simulating a gas flare. It is found that k remains stable in a wide range of a gas volumetric flux from 5 × 10−4 m3·m−2·s−1 to 15 × 10−4 m3·m−2·s−1 that limits the applicability of a working formula. Verification of the method in the field conditions of the Arctic expedition showed good agreement with the data obtained by the standard trap method: the discrepancy was only 5%. It was shown that the method is applicable for quantitative assessment of weak gas emissions, in particular methane, in the Arctic seas, where the measured volumetric fluxes are orders of magnitude lower than the established upper limit of the method.
Journal Article
Underwater Holographic Sensor for Plankton Studies In Situ including Accompanying Measurements
by
Polovtsev, Igor
,
Kirillov, Nikolay
,
Davydova, Alexandra
in
accompanying measurements
,
Biodiversity
,
Cameras
2021
The paper presents an underwater holographic sensor to study marine particles—a miniDHC digital holographic camera, which may be used as part of a hydrobiological probe for accompanying (background) measurements. The results of field measurements of plankton are given and interpreted, their verification is performed. Errors of measurements and classification of plankton particles are estimated. MiniDHC allows measurement of the following set of background data, which is confirmed by field tests: plankton concentration, average size and size dispersion of individuals, particle size distribution, including on major taxa, as well as water turbidity and suspension statistics. Version of constructing measuring systems based on modern carriers of operational oceanography for the purpose of ecological diagnostics of the world ocean using autochthonous plankton are discussed. The results of field measurements of plankton using miniDHC as part of a hydrobiological probe are presented and interpreted, and their verification is carried out. The results of comparing the data on the concentration of individual taxa obtained using miniDHC with the data obtained by the traditional method using plankton catching with a net showed a difference of no more than 23%. The article also contains recommendations for expanding the potential of miniDHC, its purpose indicators, and improving metrological characteristics.
Journal Article
In Situ Measurements of Plankton Biorhythms Using Submersible Holographic Camera
by
Polovtsev, Igor
,
Kirillov, Nikolay
,
Davydova, Alexandra
in
Algorithms
,
Biological rhythms
,
Cameras
2022
The paper presents a diagnostic complex for plankton studies using the miniDHC (digital holographic camera). Its capabilities to study the rhythmic processes in plankton ecosystems were demonstrated using the natural testing in Lake Baikal in summer. The results of in situ measurements of plankton to detect the synchronization of collective biological rhythms with medium parameters are presented and interpreted. The most significant rhythms in terms of the correlation of their parameters with medium factors are identified. The study shows that the correlation with water temperature at the mooring site has the greatest significance and reliability. The results are verified with biodiversity data obtained by the traditional mesh method. The experience and results of the study can be used for the construction of a stationary station to monitor the ecological state of the water area through the digitalization of plankton behavior.
Journal Article
Monitoring Bioindication of Plankton through the Analysis of the Fourier Spectra of the Underwater Digital Holographic Sensor Data
by
Polovtsev, Igor
,
Kirillov, Nikolay
,
Davydova, Alexandra
in
Analysis
,
Automation
,
behavioral characteristics
2024
The study presents a bioindication complex and a technology of the experiment based on a submersible digital holographic camera with advanced monitoring capabilities for the study of plankton and its behavioral characteristics in situ. Additional mechanical and software options expand the capabilities of the digital holographic camera, thus making it possible to adapt the depth of the holographing scene to the parameters of the plankton habitat, perform automatic registration of the “zero” frame and automatic calibration, and carry out natural experiments with plankton photostimulation. The paper considers the results of a long-term digital holographic experiment on the biotesting of the water area in Arctic latitudes. It shows additional possibilities arising during the spectral processing of long time series of plankton parameters obtained during monitoring measurements by a submersible digital holographic camera. In particular, information on the rhythmic components of the ecosystem and behavioral characteristics of plankton, which can be used as a marker of the ecosystem well-being disturbance, is thus obtained.
Journal Article
Features of the Application of Coherent Noise Suppression Methods in the Digital Holography of Particles
by
Polovtsev, Igor
,
Kirillov, Nikolay
,
Davydova, Alexandra
in
application range
,
Cameras
,
coherent noise
2023
The paper studies the influence of coherent noises on the quality of images of particles reconstructed from digital holograms. Standard indicators (for example, signal-to-noise ratio) and such indicators as the boundary contrast and boundary intensity jump previously proposed by the authors are used to quantify the image quality. With the use of these parameters, for examples of some known methods of suppressing coherent noises in a holographic image (eliminating the mutual influence of virtual and real images in in-line holography, and time averaging), the features and ranges of applicability of such correction were determined. It was shown that the use of the complex field amplitude reconstruction method based on the Gerchberg–Saxton algorithm and the spatial-frequency method improves the quality of determining the particle image boundary (by boundary intensity jump) starting from the distance between a hologram and a particle, which is about twice the Rayleigh distance. In physical experiments with model particles, averaging methods were studied to suppress non-stationary coherent noises (speckles). It was also shown that averaging over three digital holograms or over three holographic images is sufficient to provide a quality of particle image boundary suitable for particle recognition. In the case of multiple scattering, when it is necessary to impose a limit on the working volume length (depth of scene) of the holographic camera, the paper provides estimates that allow selecting the optimal working volume length. The estimates were made using the example of a submersible digital holographic camera for plankton studies.
Journal Article
Monitoring of Plankton Spatial and Temporal Characteristics With the Use of a Submersible Digital Holographic Camera
by
Polovtsev, Igor
,
Kirillov, Nikolay
,
Davydova, Alexandra
in
Algorithms
,
Automatic classification
,
Automation
2020
The study shows that the use of a submersible digital holographic camera as part of a multifunctional hardware and software complex allows carrying out in situ measurements of plankton, automating the process of obtaining data on plankton, as well as classifying plankton species up to an order within the specified taxonomic groups. Such automation ensures monitoring expeditionary or stationary research of species diversity and spatial and temporal organization of zooplankton in conjunction with hydrophysical parameters of the medium. This paper presents the full-scale results of vertical profiles and daily measurements of plankton made with the use of the submersible digital holographic camera, as well as the classification of plankton in laboratory and field conditions in the automatic mode. It is shown that within the accomplished version the classification algorithm using the morphological parameter makes it possible to solve the problem quickly (time required to obtain the result is less than 1 second and depends on the number of plankton particles and the frame size of a restored image), however the classification accuracy by orders varies within 50-60%.
Journal Article
ERA5 Reanalysis for the Data Interpretation on Polarization Laser Sensing of High-Level Clouds
2023
Interpreting the results of a high-level clouds (HLCs) lidar study requires a comparison with the vertical profiles of meteorological quantities. There are no regular radiosonde measurements of vertical profiles of meteorological quantities in Tomsk. The nearest aerological stations are several hundred kilometers away from the lidar and perform radiosonde measurements only a few times a day, whereas lidar experiments are performed continuously throughout the day. To estimate meteorological conditions at the HLC altitudes, we propose to use the ERA5 reanalysis. Its reliability was tested by comparing with the data from five aerological stations within a radius of 500 km around Tomsk. A labeled database of the lidar, radiosonde, and ERA5 data (2016–2020) for isobaric levels 1000–50 hPa was created. The temperature reconstruction error over the entire altitude range was characterized by an RMSE of 0.8–2.8 °C, bias of 0–0.9, and Corr ~1. The accuracy of the relative vertical profiles (RMSE 25–40%, Bias 10–22%, and Corr <0.7) and specific humidity (RMSE 0.2–1.2 g/kg, Bias ~0 g/kg, and Corr ~0) at the HLC altitudes were unsatisfying. The ERA5 data on wind direction and speed for the HLC altitudes were promising.
Journal Article
Study of Marine Particles Using Submersible Digital Holographic Camera during the Arctic Expedition
by
Polovtsev, Igor
,
Kirillov, Nikolay
,
Davydova, Alexandra
in
Algorithms
,
arctic zooplankton
,
Cameras
2022
The paper presents the results of in situ studies of marine particles of different nature using a submersible digital holographic camera (DHC) during the Arctic expedition. It also describes the features, performance specifications, and possibilities of the DHC and the DHC technology. The DHC technology can be used for noninvasive automatic evaluation of spatial and temporal characteristics of plankton, including the distribution of plankton concentrations. The comparison of quantitative analysis of zooplankton net samples and classification results using the DHC revealed that the error of the DHC classification of mesoplankton at the level of the main systematic orders was about 30%. The results of determining the data on the medium, such as water turbidity, according to the radiation shielding factor (degree) by the particles of the Suspension taxon using the DHC technology are presented; the prospects for studying the size of gas bubbles and their volume content according to the Bubble taxon data are shown. The use of holographic data for in situ point estimates is considered.
Journal Article
Environmental Contamination with Micro- and Nanoplastics Changes the Phototaxis of Euryhaline Zooplankton to Paired Photostimulation
by
Polovtsev, Igor
,
Kirillov, Nikolay
,
Morgalev, Sergey
in
Aquatic ecosystems
,
Behavior
,
Crustaceans
2022
Our earlier studies showed that paired photostimulation allows the detection of pollutants in an aqueous medium according to the behavioral responses of freshwater Crustacea. The first stimulus initiated and stabilized the behavioral response. The increase in response to the second stimulus made it possible to assess the responsiveness of the zooplankton community. This paper studies the validity of this method for the detection of micro- and nanoplastic contamination of saltwater reservoirs according to the behavioral response of Artemia salina and Moina salina crustaceans. The studies were conducted in laboratory conditions using a submersible holographic camera developed by us, which ensures the in situ detection of the concentration and speed of crustaceans in a volume of up to 1 dm3, as well as makes it possible to change the intensity and duration of the attracting light. It was established that the phototropic response of crustaceans decreases in seawater at the cumulative dose of exposure to microplastics—0.15 mg∙dm−3∙h and nanoplastics—0.3 mg∙dm−3∙h. The paired photostimulation reveals the altering effect of micro- and nanoplastics in the saltwater medium no later than 3 h after their appearance, which indicates the promising potential of this method for the alarm response in monitoring the environmental well-being of water bodies.
Journal Article
Phototropic response features for different systematic groups of mesoplankton under adverse environmental conditions
by
Polovtsev, Igor
,
Kirillov, Nikolay
,
Davydova, Alexandra
in
Aquatic environment
,
Biocenoses
,
bioindication
2021
Current trends in the application of bioindication methods are related to the use of submersible tools that perform real‐time measurements directly in the studied aquatic environment. The methods based on the registration of changes in the behavioral responses of zooplankton, in particular Crustaceans, which make up the vast majority of the biomass in water areas, seem quite promising. However, the multispecies composition of natural planktonic biocenoses poses the need to consider the potential difference in the sensitivity of organisms to pollutants. This paper describes laboratory studies of the phototropic response of plankton to attracting light. The studies were carried out on a model natural community that in equal amounts includes Daphnia magna, Daphnia pulex, and Cyclops vicinus, as well as on the monoculture groups of these species. The phototropic response was initiated by the attracting light with a wavelength of 532 nm close to the local maximum of the reflection spectrum of chlorella microalgae. Standard potassium bichromate was used as the model pollutant. The largest phototropic response value is registered in the assemblage. The concentration growth rate of crustaceans in the illuminated volume was 4.5 ± 0.3 ind (L min)−1. Of the studied species, the phototropic response was mostly expressed in Daphnia magna (3.7 ± 0.4 ind (L min)−1), while in Daphnia pulex, it was reduced to 2.4 ± 0.2 ind (L min)−1, and in Cyclops vicinus, it was very small—0.16 ± 0.02 ind (L min)−1. This is caused by peculiar trophic behavior of phyto‐ and zoophages. The addition of a pollutant, namely potassium bichromate, caused a decrease in the concentration rate of crustaceans in the attracting light zone, while a dose‐dependent change in phototropic responses was observed in a group of species and the Daphnia magna assemblage. The results of laboratory studies showed high potential of using the phototropic response of zooplankton to monitor the quality of its habitat thus ensuring the early diagnostics of water pollution. Besides, the paper shows the possibility of quantifying the phototropic response of zooplankton using submersible digital holographic cameras (DHC). This paper describes laboratory studies of the phototropic response of plankton to attracting light. The studies were carried out on a model natural community that in equal amounts includes Daphnia magna, Daphnia pulex, and Cyclops vicinus, as well as on the monoculture groups of these species. The phototropic response was initiated by the attracting light with a wavelength of 532 nm close to the local maximum of the reflection spectrum of chlorella microalgae. The results of laboratory studies showed high potential of using the phototropic response of zooplankton to monitor the quality of its habitat thus ensuring the early diagnostics of water pollution.
Journal Article