Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
156 result(s) for "Kirkland, Peter"
Sort by:
Development and Evaluation of Real Time RT-PCR Assays for Detection and Typing of Bluetongue Virus
Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple 'TaqMan' fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the 'Orbivirus Reference Collection' (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures.
Identification of a novel nidovirus as a potential cause of large scale mortalities in the endangered Bellinger River snapping turtle (Myuchelys georgesi)
In mid-February 2015, a large number of deaths were observed in the sole extant population of an endangered species of freshwater snapping turtle, Myuchelys georgesi, in a coastal river in New South Wales, Australia. Mortalities continued for approximately 7 weeks and affected mostly adult animals. More than 400 dead or dying animals were observed and population surveys conducted after the outbreak had ceased indicated that only a very small proportion of the population had survived, severely threatening the viability of the wild population. At necropsy, animals were in poor body condition, had bilateral swollen eyelids and some animals had tan foci on the skin of the ventral thighs. Histological examination revealed peri-orbital, splenic and nephric inflammation and necrosis. A virus was isolated in cell culture from a range of tissues. Nucleic acid sequencing of the virus isolate has identified the entire genome and indicates that this is a novel nidovirus that has a low level of nucleotide similarity to recognised nidoviruses. Its closest relatives are nidoviruses that have recently been described in pythons and lizards, usually in association with respiratory disease. In contrast, in the affected turtles, the most significant pathological changes were in the kidneys. Real time PCR assays developed to detect this virus demonstrated very high virus loads in affected tissues. In situ hybridisation studies confirmed the presence of viral nucleic acid in tissues in association with pathological changes. Collectively these data suggest that this virus is the likely cause of the mortalities that now threaten the survival of this species. Bellinger River Virus is the name proposed for this new virus.
A Standardised Method to Quantify the Infectious Titre of Rabbit Haemorrhagic Disease Virus
Quantifying the infectious titre of preparations containing rabbit haemorrhagic disease virus (RHDV) is an essential virological technique during RHDV research. The infectious titre of an RHDV preparation is determined using a bioassay to identify the endpoint dilution at which 50% of rabbits become infected (RID50). Previous publications have briefly described the method for estimating the infectious titre of RHDV preparations by challenging rabbits with 10-fold serial dilutions. However, these descriptions lack the critical considerations for a standardised method to estimate RID50. These details are presented here, along with a comparison between the Reed–Muench, Dragstedt–Behrens, Spearman–Kärber, and probit regression methods for calculating the RID50. All the statistical approaches demonstrated a high level of agreement in calculating the RID50. To help assess the precision of the estimated infectious titre, the improved Spearman–Kärber and probit regression methods provide the 95% confidence intervals. The method outlined improves the accuracy of results when undertaking studies of pathogenicity, host resistance, and the production of vaccines against RHDV.
Routes of Hendra Virus Excretion in Naturally-Infected Flying-Foxes: Implications for Viral Transmission and Spillover Risk
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.
Expanding the range of the respiratory infectome in Australian feedlot cattle with and without respiratory disease using metatranscriptomics
Background Bovine respiratory disease (BRD) is one of the most common diseases in intensively managed cattle, often resulting in high morbidity and mortality. Although several pathogens have been isolated and extensively studied, the complete infectome of the respiratory complex consists of a more extensive range unrecognised species. Here, we used total RNA sequencing (i.e., metatranscriptomics) of nasal and nasopharyngeal swabs collected from animals with and without BRD from two cattle feedlots in Australia. Results A high abundance of bovine nidovirus, influenza D, bovine rhinitis A and bovine coronavirus was found in the samples. Additionally, we obtained the complete or near-complete genome of bovine rhinitis B, enterovirus E1, bovine viral diarrhea virus (sub-genotypes 1a and 1c) and bovine respiratory syncytial virus, and partial sequences of other viruses. A new species of paramyxovirus was also identified. Overall, the most abundant RNA virus, was the bovine nidovirus. Characterisation of bacterial species from the transcriptome revealed a high abundance and diversity of Mollicutes in BRD cases and unaffected control animals. Of the non-Mollicutes species, Histophilus somni was detected, whereas there was a low abundance of Mannheimia haemolytica . Conclusion This study highlights the use of untargeted sequencing approaches to study the unrecognised range of microorganisms present in healthy or diseased animals and the need to study previously uncultured viral species that may have an important role in cattle respiratory disease. 9Ej9w1gXTXyGbc-DCpnuD_ Video Abstract
Spatiotemporal aspects of Hendra Virus infection in Pteropid Bats (Flying-Foxes) in Eastern Australia
Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.
Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses
Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively.
The Outcome of Porcine Foetal Infection with Bungowannah Virus Is Dependent on the Stage of Gestation at Which Infection Occurs. Part 1: Serology and Virology
Bungowannah virus is a novel porcine pestivirus identified in a disease outbreak in Australia in 2003. The aim of this study was to determine the outcome of infection of the pregnant pig with this virus. Twenty-four pregnant pigs were infected at days 35, 55, 75 or 90 of gestation. Blood, tonsillar and rectal swabs were collected from each pig at birth and then weekly until euthanasia or death. Tissues were sampled at necropsy. Viral load was measured by real-time reverse-transcription polymerase chain reaction (qRT-PCR) and antibody levels in serum by peroxidase-linked immunoassay. Bungowannah virus was detected in the serum and excretions of all infected pigs at birth regardless of the stage of gestation at which infection occurred. Persistent infections occurred following infection prior to the development of foetal immunocompetence. Unexpectedly some animals infected at day 55 of gestation later cleared the virus and seroconverted. Viraemia and viral shedding resolved quickest following infection in late gestation.
Full Genome Sequencing and Genetic Characterization of Eubenangee Viruses Identify Pata Virus as a Distinct Species within the Genus Orbivirus
Eubenangee virus has previously been identified as the cause of Tammar sudden death syndrome (TSDS). Eubenangee virus (EUBV), Tilligery virus (TILV), Pata virus (PATAV) and Ngoupe virus (NGOV) are currently all classified within the Eubenangee virus species of the genus Orbivirus, family Reoviridae. Full genome sequencing confirmed that EUBV and TILV (both of which are from Australia) show high levels of aa sequence identity (>92%) in the conserved polymerase VP1(Pol), sub-core VP3(T2) and outer core VP7(T13) proteins, and are therefore appropriately classified within the same virus species. However, they show much lower amino acid (aa) identity levels in their larger outer-capsid protein VP2 (<53%), consistent with membership of two different serotypes - EUBV-1 and EUBV-2 (respectively). In contrast PATAV showed significantly lower levels of aa sequence identity with either EUBV or TILV (with <71% in VP1(Pol) and VP3(T2), and <57% aa identity in VP7(T13)) consistent with membership of a distinct virus species. A proposal has therefore been sent to the Reoviridae Study Group of ICTV to recognise 'Pata virus' as a new Orbivirus species, with the PATAV isolate as serotype 1 (PATAV-1). Amongst the other orbiviruses, PATAV shows closest relationships to Epizootic Haemorrhagic Disease virus (EHDV), with 80.7%, 72.4% and 66.9% aa identity in VP3(T2), VP1(Pol), and VP7(T13) respectively. Although Ngoupe virus was not available for these studies, like PATAV it was isolated in Central Africa, and therefore seems likely to also belong to the new species, possibly as a distinct 'type'. The data presented will facilitate diagnostic assay design and the identification of additional isolates of these viruses.
Revisiting the Importance of Orthobunyaviruses for Animal Health: A Scoping Review of Livestock Disease, Diagnostic Tests, and Surveillance Strategies for the Simbu Serogroup
Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.