Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
13
result(s) for
"Kirli, Koray"
Sort by:
Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions
by
Fornasiero, Eugenio F.
,
Sakib, M. Sadman
,
Rammner, Burkhard
in
631/337/475
,
631/378/340
,
631/443/319/1557
2018
The turnover of brain proteins is critical for organism survival, and its perturbations are linked to pathology. Nevertheless, protein lifetimes have been difficult to obtain in vivo. They are readily measured in vitro by feeding cells with isotopically labeled amino acids, followed by mass spectrometry analyses. In vivo proteins are generated from at least two sources: labeled amino acids from the diet, and non-labeled amino acids from the degradation of pre-existing proteins. This renders measurements difficult. Here we solved this problem rigorously with a workflow that combines mouse in vivo isotopic labeling, mass spectrometry, and mathematical modeling. We also established several independent approaches to test and validate the results. This enabled us to measure the accurate lifetimes of ~3500 brain proteins. The high precision of our data provided a large set of biologically significant observations, including pathway-, organelle-, organ-, or cell-specific effects, along with a comprehensive catalog of extremely long-lived proteins (ELLPs).
Measuring precise protein turnover rates in animals is technically challenging at the proteomic level. Here, Fornasiero and colleagues use isotopic labeling with mass spectrometry and mathematical modeling to accurately determine protein lifetimes in the mouse brain
Journal Article
Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications
by
Öztürk, Serkan Utku
,
Faklaris Orestis
,
Kirli Koray
in
Computer programs
,
Metadata
,
Microscopy
2021
For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.Micro-Meta App is an intuitive, highly interoperable, open-source software tool designed to facilitate the extraction and collection of relevant microscopy metadata as specified by recent community guidelines.
Journal Article
A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning
by
Dehne, Heinz Jürgen
,
Kırlı, Koray
,
Karaca, Samir
in
Active Transport, Cell Nucleus
,
Animals
,
Biochemistry
2015
CRM1 is a highly conserved, RanGTPase-driven exportin that carries proteins and RNPs from the nucleus to the cytoplasm. We now explored the cargo-spectrum of CRM1 in depth and identified surprisingly large numbers, namely >700 export substrates from the yeast S. cerevisiae, ≈1000 from Xenopus oocytes and >1050 from human cells. In addition, we quantified the partitioning of ≈5000 unique proteins between nucleus and cytoplasm of Xenopus oocytes. The data suggest new CRM1 functions in spatial control of vesicle coat-assembly, centrosomes, autophagy, peroxisome biogenesis, cytoskeleton, ribosome maturation, translation, mRNA degradation, and more generally in precluding a potentially detrimental action of cytoplasmic pathways within the nuclear interior. There are also numerous new instances where CRM1 appears to act in regulatory circuits. Altogether, our dataset allows unprecedented insights into the nucleocytoplasmic organisation of eukaryotic cells, into the contributions of an exceedingly promiscuous exportin and it provides a new basis for NES prediction. Animals, plants and other eukaryotic organisms subdivide their cells into compartments that carry out specific tasks. For example, the cell nucleus hosts the genome and handles the genetic information, whereas the surrounding cytoplasm is specialized in making proteins. These proteins are then either used in the cytoplasm or transported to the nucleus and other cell compartments. Since proteins are not made in the nucleus, all proteins in this compartment must be imported from the cytoplasm. Two layers of membrane separate the nucleus and cytoplasm from each other. Any exchange of material must therefore proceed through channels called nuclear pore complexes, or NPCs for short. The NPCs have filters that allow only small molecules a free transit, while larger ones are typically rejected. However, larger proteins may also rapidly pass through the nuclear pore complexes if loaded onto dedicated shuttle molecules; for example, “exportins” transport proteins out of the nucleus. Kırlı, Karaca et al. used an approach called proteomics to measure the levels of 5,000 different proteins within the nucleus and the cytoplasm. Such a census helps to predict where a given protein works and where it might cause problems. Further experiments also used proteomics to identify which proteins are carried by an exportin called CRM1. This revealed that a remarkably large number of different proteins (around 1,000) are exported by CRM1 from either yeast, human or frog cell nuclei. Most of these “cargo” proteins were previously thought to never leave the cytoplasm. It now seems, however, that these proteins can leak into the nucleus, but CRM1 recognizes them as cytoplasmic proteins and expels them from the nucleus. These findings suggest that the border control at NPCs is less perfect than was previously believed. If not remedied, this would pose a serious problem for the cell, because the accumulation of \"wrong\" proteins inside the nucleus would disturb the processes that occur there and could destabilize the genome. Kırlı, Karaca et al. propose that the export of such accidentally displaced proteins by CRM1 is a crucial measure to protect the nucleus.
Journal Article
The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data
by
Öztürk, Serkan Utku
,
Kırlı, Koray
,
Schroeder, Andrew J.
in
631/114/2398
,
631/208/212
,
706/648/697/129/2043
2022
The 4D Nucleome (4DN) Network aims to elucidate the complex structure and organization of chromosomes in the nucleus and the impact of their disruption in disease biology. We present the 4DN Data Portal (
https://data.4dnucleome.org/
), a repository for datasets generated in the 4DN network and relevant external datasets. Datasets were generated with a wide range of experiments, including chromosome conformation capture assays such as Hi-C and other innovative sequencing and microscopy-based assays probing chromosome architecture. All together, the 4DN data portal hosts more than 1800 experiment sets and 36000 files. Results of sequencing-based assays from different laboratories are uniformly processed and quality-controlled. The portal interface allows easy browsing, filtering, and bulk downloads, and the integrated HiGlass genome browser allows interactive visualization and comparison of multiple datasets. The 4DN data portal represents a primary resource for chromosome contact and other nuclear architecture data for the scientific community.
This paper describes the ‘4DN Data Portal’ that hosts data generated by the 4D Nucleome network, including Hi-C and other chromatin conformation capture assays, as well as various sequencing-based and imaging-based assays. Raw data have been uniformly processed to increase comparability and the portal is implemented with visualization tools to browse the data without download.
Journal Article
The 4D nucleome project
2017
The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the goal of gaining deeper mechanistic insights into how the nucleus is organized and functions. The project will develop and benchmark experimental and computational approaches for measuring genome conformation and nuclear organization, and investigate how these contribute to gene regulation and other genome functions. Validated experimental technologies will be combined with biophysical approaches to generate quantitative models of spatial genome organization in different biological states, both in cell populations and in single cells.
The 4D Nucleome Network aims to map the spatial and dynamic organization of the human and mouse genomes to gain insight into the structure and biological functions of the nucleus.
The 4D nucleome project
In this Perspective, Job Dekker
et al
. outline the goals and strategies of the 4D Nucleome Network, a consortium of researchers that aims to map the spatial organization and dynamics of the human and mouse genomes to gain insight into the structure and biological functions of the nucleus.
Journal Article
Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues
2019
Spatial mapping of proteins in tissues is hindered by limitations in multiplexing, sensitivity and throughput. Here we report immunostaining with signal amplification by exchange reaction (Immuno-SABER), which achieves highly multiplexed signal amplification via DNA-barcoded antibodies and orthogonal DNA concatemers generated by primer exchange reaction (PER). SABER offers independently programmable signal amplification without in situ enzymatic reactions, and intrinsic scalability to rapidly amplify and visualize a large number of targets when combined with fast exchange cycles of fluorescent imager strands. We demonstrate 5- to 180-fold signal amplification in diverse samples (cultured cells, cryosections, formalin-fixed paraffin-embedded sections and whole-mount tissues), as well as simultaneous signal amplification for ten different proteins using standard equipment and workflows. We also combined SABER with expansion microscopy to enable rapid, multiplexed super-resolution tissue imaging. Immuno-SABER presents an effective and accessible platform for multiplexed and amplified imaging of proteins with high sensitivity and throughput.
Journal Article
The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain
2018
The homeostasis of the proteome depends on the tight regulation of the mRNA and protein abundances, of the translation rates, and of the protein lifetimes. Results from several studies on prokaryotes or eukaryotic cell cultures have suggested that protein homeostasis is connected to, and perhaps regulated by, the protein and the codon sequences. However, this has been little investigated for mammals
in vivo
. Moreover, the link between the coding sequences and one critical parameter, the protein lifetime, has remained largely unexplored, both
in vivo
and
in vitro
. We tested this in the mouse brain, and found that the percentages of amino acids and codons in the sequences could predict all of the homeostasis parameters with a precision approaching experimental measurements. A key predictive element was the wobble nucleotide. G-/C-ending codons correlated with higher protein lifetimes, protein abundances, mRNA abundances and translation rates than A-/U-ending codons. Modifying the proportions of G-/C-ending codons could tune these parameters in cell cultures, in a proof-of-principle experiment. We suggest that the coding sequences are strongly linked to protein homeostasis
in vivo
, albeit it still remains to be determined whether this relation is causal in nature.
Journal Article
Micro-Meta App: an interactive software tool to facilitate the collection of microscopy metadata based on community-driven specifications
2021
For the information content of microscopy images to be appropriately interpreted, reproduced, and meet FAIR (Findable Accessible Interoperable and Reusable) principles, they should be accompanied by detailed descriptions of microscope hardware, image acquisition settings, image pixel and dimensional structure, and instrument performance. Nonetheless, the thorough documentation of imaging experiments is significantly impaired by the lack of community-sanctioned easy-to-use software tools to facilitate the extraction and collection of relevant microscopy metadata. Here we present Micro-Meta App, an intuitive open-source software designed to tackle these issues that was developed in the context of nascent global bioimaging community organizations, including BioImaging North America (BINA) and QUAlity Assessment and REProducibility in Light Microscopy (QUAREP-LiMi), whose goal is to improve reproducibility, data quality and sharing value for imaging experiments. The App provides a user-friendly interface for building comprehensive descriptions of the conditions utilized to produce individual microscopy datasets as specified by the recently proposed 4DN-BINA-OME tiered-system of Microscopy Metadata model. To achieve this goal the App provides a visual guide for a microscope-user to: 1) interactively build diagrammatic representations of hardware configurations of given microscopes that can be easily reused and shared with colleagues needing to document similar instruments. 2) Automatically extracts relevant metadata from image files and facilitates the collection of missing image acquisition settings and calibration metrics associated with a given experiment. 3) Output all collected Microscopy Metadata to interoperable files that can be used for documenting imaging experiments and shared with the community. In addition to significantly lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training users that have limited knowledge of the intricacies of light microscopy experiments. To ensure wide-adoption by microscope-users with different needs Micro-Meta App closely interoperates with MethodsJ2 and OMERO.mde, two complementary tools described in parallel manuscripts.