Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Kirwan, Kerry"
Sort by:
The life cycle impact for platinum group metals and lithium to 2070 via surplus cost potential
PurposeA surplus cost potential (SCP) indicator has been developed as a measure of resource scarcity in the life cycle impact assessment (LCIA) context. To date, quality SCP estimates for other minerals than fossils are either not yet available or suffer methodological and data limitations. This paper overcomes these limitations and demonstrate how SCP estimates for metals can be calculated without the utilisation of ore grade function and by collecting primary economic and geological data.MethodsData were collected in line with the geographical distribution, mine type, deposit type and production volumes and total production costs in order to construct cost-cumulative availability curves for platinum group metals (PGMs) and lithium. These curves capture the total amount of known mineral resources that can be recovered profitably at various prices from different types of mineral deposits under current conditions (this is, current technology, prevailing labour and other input prices). They served as a basis for modelling the marginal cost increase, a necessary parameter for estimating the SCP indicator. Surplus costs were calculated for different scenario projections for future mineral production considering future market dynamics, recyclability rates, demand-side technological developments and economic growth and by applying declining social discount rate.Results and discussionSurplus costs were calculated for three mineral production scenarios, ranging from (US$2014/kg) 6545–8354 for platinum, 3583–4573 for palladium, 8281–10,569 for rhodium, 513–655 for ruthenium, 3201–4086 for iridium and 1.70–5.80 for lithium. Compared with the current production costs, the results indicate that problematic price increases of lithium are unlikely if the latest technological trends in the automotive sector will continue up to 2070. Surplus costs for PGMs are approximately one-third of the current production costs in all scenarios; hence, a threat of their price increases by 2070 will largely depend on the discovery of new deposits and the ability of new technologies to push these costs down over time. This also applies to lithium if the increasing electrification of road transport will continue up to 2070.ConclusionsThis study provides useful insight into the availability of PGMs and lithium up to 2070. It proves that if time and resources permit, reliable surplus cost estimates can be calculated, at least in the short-run, based on the construction of one’s own curves with the level of quality comparable to expert-driven consulting services. Modelling and incorporating unknown deposits and potential future mineral production costs into these curves is the subject of future work.
Sustainable Alternative Composites Using Waste Vegetable Oil Based Resins
Laminates were produced with epoxy resins from waste vegetable oil (WVO) intended for the manufacturing of environmentally-friendly alternatives for the composites industry. Post-use cooking oil appears a promising source of triglycerides for polymer manufacturing. Matrices cured with methylhexahydrophthalic anhydride (MHHPA) were reinforced with glass and flax fibres, creating a library of composites that were compared to analogues from virgin oil and benchmarked against commercial diglycidyl ether of bisphenol A (DGEBA). Glass fibre-reinforced composites presented Young’s moduli similar to the benchmark but reduced tensile strength. Chemical pre-treatment of the flax fibre (NaOH and stearic acid) countered the limited tensile performance observed for materials with untreated flax; improvements were evidenced by DMA and SEM. Moreover, WVO-based resins greatly improved impact properties and reduced density with no effect on thermal stability. Therefore, WVO-based composites appear as more sustainable alternatives in applications demanding toughness, stiffness and lightweight over strength.
Preparation of Printable and Biodegradable Cellulose-Laponite Composite for Electronic Device Application
Printable and biodegradable printed circuit boards (PCBs) prepared by using cellulose as the continuous matrix, laponite as flame retardant filler with various weight ratio (0, 5, 10 and 20 wt% with respect to the α-cellulose quantity used to prepare the composites) and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) as the recoverable dissolution medium. Prepared cellulose-composites were subjected into physical, chemical, thermal, mechanical and biodegradation analyses to check the suitability of the cellulose-laponite composite for biodegradable electronic application. The addition of laponite into cellulose increased the degradation temperature, flame retardancy and decreased the mechanical properties of the cellulose-laponite composites. The surface nature of the cellulose composite converted from hydrophilic to hydrophobic (contact angle value increased in the range from 50° to 112°) by treating with relatively small amount of hydrophobizing agent (< 1 wt%). The conductive ink printing experiments on the composites explaining the role of hydrophobizing agent and laponite in the composites. Biodegradability of the cellulose was evaluated by enzyme treatments and derived the effect of laponite, hydrophobic agent and conductive ink.
Interlayer Hybridization of Virgin Carbon, Recycled Carbon and Natural Fiber Laminates
To meet sustainability objectives in the transport sector, natural fiber (NF) and recycled carbon fiber (RCF) have been developed, although they have been typically limited to low to medium performance components. This work has considered the effect of interlayer hybridization of woven NF and non-woven RCF with woven virgin carbon fibers (VCF) on the mechanical and damping performance of hybrid laminates, produced using double bag vacuum infusion (DBVI). The mean damping ratio of the pure laminates showed a trend of NF>RCF>VCF, which was inversely proportional to their modulus. The tensile, flexural and damping properties of hybrid laminates were dominated by the outermost ply. The VCF-RCF and VCF-NF hybrid laminates showed a comparatively greater mean damping ratio. The results of this work demonstrate a method for the uptake of alternative materials with a minimal impact on the mechanical properties and improved damping performance.
Workshop on life cycle sustainability assessment: the state of the art and research needs—November 26, 2012, Copenhagen, Denmark
Life cycle sustainability assessment (LCSA) was the topic of a workshop whose goal was to discuss the different schools of thoughts on LCSA and to outline a research agenda framework for enabling/improving LCSA. Highlights of the workshop, held on Nov 26, 2012 in Copenhagen, are discussed.
Social-psychological aspects of domestic renewable energy: a study of low-income tenants responses to solar photovoltaics
If the UK is to achieve the aim of moving to a low-carbon society, it is necessary to understand the factors involved in public acceptance of new energy technologies. To date however, there is little research exploring responses to renewable energy technologies in low-income households and disadvantaged communities, especially where those technologies are 'imposed' by outside agencies. This research attempts to address this gap by investigating perceptions of and attitudes towards solar photovoltaic (PV) panels in a 'New Deal for Communities' area in Leicester (UK). Forty-two semi-structured interviews were conducted with tenants of the solar homes prior to installation of PV panels. A theoretical framework reflecting issues of technology diffusion, place-related social identity and social networks was used as a template in coding participants' accounts. A follow-up questionnaire survey (n=13) was used to explore some of the issues arising from the interviews. Findings suggest that participants' perceptions of PV prior to installation reflect constructs from Rogers' (2003) attribute-perception model, but that this model did not capture all factors that influenced perceptions of PV. Tenants recognised personal and community benefits from PV. However, some concern was expressed about the outcomes of installation and some participants reported a lack of interest and little awareness of the technology. In addition, there were concerns that the scheme may damage community relations by inspiring envy in those whose houses were not included. Taken as a whole, these findings stress the importance of investigating tenants' perceptions prior to implementation of the project. The second study found that if tenants do not save money from PV then they will have a negative attitude towards it. From these findings, conclusions are drawn about the potential for successfully implementing similar schemes in areas undergoing urban regeneration and suggest some ways in which this process can be facilitated.
Alternative glazing for automotive vehicles: executive summary
The first approach utilises a thin film of acrylic that is moulded onto the outside of a polycarbonate substrate. It was found that the gate of the injection mould cavity must be of uniform cross section otherwise local shear heating can occur and melt the acrylic film. The injection gate must also be located entirely on one side of the mould cavity otherwise the film is punctured by the molten polycarbonate and free to float within the cavity. Any mixing of the two materials will lead to opaque components due the difference in the refractive indices. The film was found to improve the UV resistance of any component, acting as a protective buffer for the polycarbonate. A new variety of hardcoat was applied to film-backed samples to impart abrasion resistance and samples were found to outperform commercially available alternatives under recognised laboratory conditions. The film-backed samples also exhibited excellent impact resistance when impacted upon the film-face. However, similar components failed at extremely low energy levels when impacted from the non-film face because flaws in the acrylic film caused cracks to be initiated when the film was placed into tension. The level of adhesion between the film and the polycarbonate has been found to be critical and if the failure mechanism could be guaranteed, then intruder resistant glazing that could be broken from the inside in an emergency becomes a possibility. Such a product would address the identified consumer concern of being trapped in a vehicle. The second approach utilises simultaneous dual injection moulding (2K), which has previously only been used to manufacture coloured components. A successful feasibility study was undertaken to demonstrate the concept of producing transparent components via such a process. This showed that much greater control is required for transparent applications otherwise the skin and core materials mix and opaque components are produced. The generally accepted academic principles associated with the process have been shown to be too simplistic and cannot be relied upon to guarantee good results. The ratio of viscosities of the skin and core materials appear to be more dominant than previously thought and the relative injection speeds of the two materials has a direct influence upon interfacial mixing and haze generation. It was also found that haze could be avoided if the refractive indices of the skin and core material were matched to within ±0.002, but this is impractical. A third area of research examined the feasibility of introducing structured glass fibres weaves into transparent components to improve rigidity. The study resulted in the construction of a transparent glass fibre pre-preg that could be moulded onto the outer surface of polycarbonate components. Flexural tests revealed that a single layer of glass fibre increased the flexural modulus of test samples by a factor of 3, whilst transparency and clarity were retained. Two patents have been filed as a direct result of this work.
Using Smartphone Technology to Monitor Physical Activity in the 10,000 Steps Program: A Matched Case–Control Trial
Website-delivered physical activity interventions are successful in producing short-term behavior change. However, problems with engagement and retention of participants in these programs prevent long-term behavior change. New ways of accessing online content (eg, via smartphones) may enhance engagement in these interventions, which in turn may improve the effectiveness of the programs. To measure the potential of a newly developed smartphone application to improve health behaviors in existing members of a website-delivered physical activity program (10,000 Steps, Australia). The aims of the study were to (1) examine the effect of the smartphone application on self-monitoring and self-reported physical activity levels, (2) measure the perceived usefulness and usability of the application, and (3) examine the relationship between the perceived usefulness and usability of the application and its actual use. All participants were existing members of the 10,000 Steps program. We recruited the intervention group (n = 50) via email and instructed them to install the application on their smartphone and use it for 3 months. Participants in this group were able to log their steps by using either the smartphone application or the 10,000 Steps website. Following the study, the intervention group completed an online questionnaire assessing perceived usability and usefulness of the smartphone application. We selected control group participants (n = 150), matched for age, gender, level of self-monitoring, preintervention physical activity level, and length of membership in the 10,000 Steps program, after the intervention was completed. We collected website and smartphone usage statistics during the entire intervention period. Over the study period (90 days), the intervention group logged steps on an average of 62 days, compared with 41 days in the matched group. Intervention participants used the application 71.22% (2210/3103) of the time to log their steps. Logistic regression analyses revealed that use of the application was associated with an increased likelihood to log steps daily during the intervention period compared with those not using the application (odds ratio 3.56, 95% confidence interval 1.72-7.39). Additionally, use of the application was associated with an increased likelihood to log greater than 10,000 steps on each entry (odds ratio 20.64, 95% confidence interval 9.19-46.39). Linear regression analysis revealed a nonsignificant relationship between perceived usability (r = .216, P = .21) and usefulness (r = .229, P = .17) of the application and frequency of logging steps in the intervention group. Using a smartphone application as an additional delivery method to a website-delivered physical activity intervention may assist in maintaining participant engagement and behavior change. However, due to study design limitations, these outcomes should be interpreted with caution. More research, using larger samples and longer follow-up periods, is needed to replicate the findings of this study.