Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
96 result(s) for "Kiss, Péter János"
Sort by:
Large- and Small-Scale Environmental Factors Drive Distributions of Ant Mound Size Across a Latitudinal Gradient
Red wood ants are keystone species of forest ecosystems in Europe. Environmental factors and habitat characteristics affect the size of their nest mounds, an important trait being in concordance with a colony’s well-being and impact on its surroundings. In this study, we investigated the effect of large-scale (latitude and altitude) and small-scale environmental factors (e.g., characteristics of the forest) on the size of nest mounds of Formica polyctena in Central Europe. We predicted that the change in nest size is in accordance with Bergmann’s rule that states that the body size of endotherm animals increases with the higher latitude and/or altitude. We found that the size of nests increased along the latitudinal gradient in accordance with Bergmann’s rule. The irradiation was the most important factor responsible for the changes in nest size, but temperature and local factors, like the perimeter of the trees and their distance from the nest, were also involved. Considering our results, we can better understand the long-term effects and consequences of the fast-changing environmental factors on this ecologically important group. This knowledge can contribute to the planning of forest management tactics in concordance with the assurance of the long-term survival of red wood ants.
Karst dolines provide diverse microhabitats for different functional groups in multiple phyla
Fine-scale topographic complexity creates important microclimates that can facilitate species to grow outside their main distributional range and increase biodiversity locally. Enclosed depressions in karst landscapes (‘dolines’) are topographically complex environments which produce microclimates that are drier and warmer (equator-facing slopes) and cooler and moister (pole-facing slopes and depression bottoms) than the surrounding climate. We show that the distribution patterns of functional groups for organisms in two different phyla, Arthropoda (ants) and Tracheophyta (vascular plants), mirror this variation of microclimate. We found that north-facing slopes and bottoms of solution dolines in northern Hungary provided key habitats for ant and plant species associated with cooler and/or moister conditions. Contrarily, south-facing slopes of dolines provided key habitats for species associated with warmer and/or drier conditions. Species occurring on the surrounding plateau were associated with intermediate conditions. We conclude that karst dolines provide a diversity of microclimatic habitats that may facilitate the persistence of taxa with diverse environmental preferences, indicating these dolines to be potential safe havens for multiple phyla under local and global climate oscillations.
Anthropogenic disturbances alter the conservation value of karst dolines
Dolines are depressions in karst landscapes that are of high value for conservation, providing habitats and supporting species not found in the surrounding landscape. This is due to their high microhabitat diversity and ability to decouple microclimate from regional climate changes, making them potential refugia for biodiversity. Nevertheless, local anthropogenic disturbances have had considerable impact on the species composition and vegetation structure of many dolines. Here we investigate the conservation value of dolines in three European karst areas, where different levels and types of anthropogenic disturbances have been shaping the vegetation for centuries, using the number of plant species that are cool-adapted, moist-adapted and of high conservation importance (i.e. vulnerable species) as indicators. We found that anthropogenic disturbances generally have a negative impact, reducing the number of vulnerable species supported by dolines. However, more cool-adapted and moist-adapted species were found in some dolines planted with non-native Picea abies than in less disturbed dolines, indicating that anthropogenic disturbances can also have positive consequences for biodiversity. We conclude that anthropogenic disturbances alter the capacity of dolines to support vulnerable species, and that this will impact survival of species in landscapes under global warming. In this context, the effects of various disturbances on species composition and diversity need to carefully considered to determine the best conservation and/or management options.
Plant composition and diversity at edges in a semi-natural forest–grassland mosaic
As key components of landscapes, edges have received considerable scientific attention in anthropogenic ecosystems. However, edges in natural and semi-natural forest–grassland mosaics have received less attention, despite the fact that they cover a considerable proportion of these mosaic ecosystems. We studied forest edges in a semi-natural forest– grassland mosaic ecosystem of the Samobor Mountains (Croatia). Our aim was to compare the species composition, diversity and ecological indicator values of forest edges to those of the interior parts of the adjacent forest and grassland habitats. The vegetation was studied in 80 plots established in forest patch interiors, north-facing forest edges, south-facing forest edges and grassland interiors. We found that edges had a unique species composition, containing species from both the forest and the grassland interiors plus their own edge-related species (i.e. species that significantly preferred the edge habitat). These local edgerelated species did not correspond to regionallyidentified edge-related species. Compared to the forest and the grassland interiors, we revealed increased species richness in north-facing edges but not in southfacing edges. The mean light availability and nutrient supply indicator values of the edges were intermediate between those of the forest interiors and the grasslands. The mean soil moisture indicator values of the edges were similar to those of the grasslands. Our results show that edges form a unique component of forest–grassland mosaics, and they contribute considerably to landscape complexity, which should be taken into account during conservation decisions and habitat management.
Wood ants as biological control of the forest pest beetles Ips spp
Climate change is one of the major threats to biodiversity, but its impact varies among the species. Bark beetles ( Ips spp.), as well as other wood-boring pests of European forests, show escalating numbers in response to the changes driven by climate change and seriously affect the survival of the forests through the massive killing of trees. Many methods were developed to control these wood-boring beetles, however, their implementation can be detrimental for other forest specialists. Ants are widely used for biological pest-control, so in our study, we aimed to test the effect of Formica polyctena on the control of the wood-boring beetles. The results show that the proportion of infested trees is significantly reduced by the increase of the number of F. polyctena nests, with a strong effect on those infested by  Ips species. We also show that the boring beetle community is shaped by different biotic and abiotic factors, including the presence of F. polyctena nests. However, the boring beetle infestation was not related to the latitude, altitude and age of the forests. Based on our results, we assert the effectiveness of the red wood ants as biological pest control and the importance of their conservation to keep the health of the forests.
Diversity patterns in sandy forest-steppes: a comparative study from the western and central Palaearctic
The Palearctic forest-steppe biome is a narrow vegetation zone between the temperate forest and steppe biomes, which provides important habitats for many endangered species and represents an important hotspot of biodiversity. Although the number of studies on forest–grassland mosaics is increasing, information currently available about the general compositional and structural patterns of Eurasian forest-steppes is scarce. Our study aimed to compare the habitat structure, species composition and diversity patterns of two distant sandy forest-steppes of Eurasia. We compared 72 relevés made in the main habitat components (forest, forest edge and grassland) of sandy forest-steppes in three Hungarian and three Kazakh sites. The size of the plots was 25 m2. Species number, Shannon diversity and species evenness values were calculated for each plot. Fidelity calculations and linear mixed effects models were used for the analyses. We found that the vegetation and diversity patterns of the two forest-steppes are similar and their components play important roles in maintaining landscape-scale diversity. Despite the higher species richness in Hungary, Shannon diversity was higher in Kazakhstan. The deciduous forest edges of both areas had significantly higher species richness than the neighbouring habitats (forests and grasslands); therefore they can be considered local biodiversity hotspots. Due to the special characteristics of this vegetation complex, we emphasize the high conservation value of all landscape components as a coherent system throughout the entire range of the Eurasian forest-steppe biome.
Beyond the Forest-Grassland Dichotomy: The Gradient-Like Organization of Habitats in Forest-Steppes
Featuring a transitional zone between closed forests and treeless steppes, forest-steppes cover vast areas, and have outstanding conservation importance. The components of this mosaic ecosystem can conveniently be classified into two basic types, forests and grasslands. However, this dichotomic classification may not fit reality as habitat organization can be much more complex. In this study, our aim was to find out if the main habitat types can be grouped into two distinct habitat categories (which would support the dichotomic description), or a different paradigm better fits this complex ecosystem. We selected six main habitats of sandy forest-steppes, and, using 176 relevés, we compared their vegetation based on species composition (NMDS ordination, number of common species of the studied habitats), relative ecological indicator values (mean indicators for temperature, soil moisture, and light availability), and functional species groups (life-form categories, geoelement types, and phytosociological preference groups). According to the species composition, we found a well-defined gradient, with the following habitat order: large forest patches, medium forest patches, small forest patches, north-facing edges, south-facing edges, and grasslands. A considerable number of species were shared among all habitats, while the number of species restricted to certain habitat types was also numerous, especially for north-facing edges. The total (i.e., pooled) number of species peaked near the middle of the gradient, in north-facing edges. The relative ecological indicator values and functional species groups showed mostly gradual changes from the large forest patches to the grasslands. Our results indicate that the widely used dichotomic categorization of forest-steppe habitats into forest and grassland patches is too simplistic, potentially resulting in a considerable loss of information. We suggest that forest-steppe vegetation better fits the gradient-based paradigm of landscape structure, which is able to reflect continuous variations.
Protective behavior or ‘true’ tool use? Scrutinizing the tool use behavior of ants
In the genus Aphaenogaster, workers use tools to transport liquid food to the colony. During this behavior, ants place or drop various kinds of debris into liquids or soft food, and then, they carry the food‐soaked tools back to the nest. According to some authors, this behavior is not \"true\" tool use because it represents two separate processes: a defense response to cover the dangerous liquid and a transport of food. Here, we investigated the debris dropping and retrieving behavior of the ant Aphaenogaster subterranea to establish which of the two hypotheses is more probable by conducting manipulative experiments. We tested the responses of eight colonies (a) to liquid food (honey‐water) and nonfood liquids (water) in different distances from the nest and (b) to nonthreatening liquids previously covered or presented as small droplets. We also tested whether the nutritional condition of colonies (i.e., starved or satiated) would affect the intensity and rate of debris dropping. Our results were consistent with the tool‐using behavior hypothesis. Firstly, ants clearly differentiated between honey‐water and water, and they directed more of their foraging effort toward liquids farther from the nest. Secondly, ants performed object dropping even into liquids that did not pose the danger of drowning or becoming entangled. Lastly, the nutritional condition of colonies had a significant effect on the intensity and rate of object dropping, but in the opposite direction than we expected. Our results suggest that the foraging behavior of A. subterranea is more complex than that predicted by the two‐component behavior hypothesis and deserves to be considered as \"true\" tool use. In the genus Aphaenogaster, workers use various materials to transport liquid food to the colony. According to some authors, this behavior represents two separate processes: a defense response to cover the dangerous liquid and a transport of food. Our results with Aphaenogaster subterraneasuggest that this behavior is more complex than that predicted by the two‐component behavior hypothesis and deserves to be considered as \"true\" tool use.
Consequences of Climate Change-Induced Habitat Conversions on Red Wood Ants in a Central European Mountain: A Case Study
The consequences of anthropogenic climate change are one of the major concerns of conservation biology. A cascade of negative effects is expected to affect various ecosystems, one of which is Central European coniferous forests and their unique biota. These coniferous forests are the primary habitat of many forest specialist species such as red wood ants. Climate change-induced rising of temperature allows trees to skip winter hibernation, making them more vulnerable to storms that cause wind felling, and in turn, promotes bark beetle infestations that results in unscheduled clear-cuttings. Red wood ants can also be exposed to such habitat changes. We investigated the effects of bark beetle-induced clear-cutting and the absence of coniferous trees on colonies of Formica polyctena, including a mixed-coniferous forest as a reference. Our aim was to investigate how these habitat features affect the nest characteristics and nesting habits of F. polyctena. Our results indicate that, in the absence of conifers, F. polyctena tend to use different alternatives for nest material, colony structure, and food sources. However, the vitality of F. polyctena colonies significantly decreased (smaller nest mound volumes). Our study highlights the ecological flexibility of this forest specialist and its potential to survive under extreme conditions.
Térségi sokszínűség és stabilitás: az iskolázottság települési szintű egyenlőtlenségeinek változása Magyarországon 1990–2011 között
Education is one of the most important factors of territorial development; therefore, it is worth following its inequality tendencies. After the political transition in Hungary, the several-decade long trend of declining inequalities slowed down, but from the turn of the millennium, the regional inequalities of education decreased again, which raise some – partly methodological– dilemmas. In this study, data on the level of education, the average finished school years ofthe Hungarian population are analysed for 1990,2001 and 2011, based on census data. The results demonstrate that changes in this indicator compared with the national average without Budapest (fit, overall, in the formation of the spatial structure of the country after the political transition, and) have resulted in a higher level of education. Nevertheless, there are relative losers and winners of this process. The winner areas include the agglomerations of Budapest and the largest towns, North Western Transdanubia as well as the surroundings of Lake Balaton; the loser areas comprise the territories affected by the industrial structural crisis and the traditional peripheral zones. The inner-district inequalities call attention to the differing paths of regions. Peripheral areas are characterised by higher level of inequalities and a divergent process, while developed districts with more favourable educational values can be described by lower level of inequalities and dominant convergence. This relation proves the relevanceof Williamson’s inverted U curve hypothesisin income conditions (Németh–Kiss 2007) and in the level of education. The current analyses highlight that in terms of some of the educational indicators the stable backwardness and increasing falling behind of the peripheral areas continued after the political transition.