Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Kitajima, Sakihito"
Sort by:
Enzymatic hydrolysis of PET: functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190, and its engineering for improved activity
2018
Cut190 from Saccharomonospora viridis AHK190 (Cut190) is the only cutinase that exhibits inactive (Ca2+-free) and active (Ca2+-bound) states, although other homologous cutinases always maintain the active states (Ca2+-free and bound). The X-ray crystallography of the S176A mutant of Cut190* (Cut190_S226P/R228S) showed that three Ca2+ ions were bound at sites 1–3 of the mutant. We analyzed the roles of three Ca2+ ions by mutation and concluded that they play different roles in Cut190* for activation (sites 1 and 3) and structural and thermal stabilization (sites 2 and 3). Based on these analyses, we elucidated the mechanism for the conformational change from the Ca2+-free inactive state to the Ca2+-bound active state, proposing the novel Ca2+ effect on structural dynamics of protein. The introduction of a disulfide bond at Asp250 and Glu296 in site 2 remarkably increased the melting temperatures of the mutant enzymes by more than 20–30 °C (while Ca2+-bound) and 4–14 °C (while Ca2+-free), indicating that a disulfide bond mimics the Ca2+ effect. Replacement of surface asparagine and glutamine with aspartic acid, glutamic acid, or histidine increased the melting temperatures. Engineered mutant enzymes were evaluated by an increase in melting temperatures and kinetic values, based on the hydrolysis of poly(butylene succinate-co-adipate) and microfiber polyethylene terephthalate (PET). A combined mutation, Q138A/D250C-E296C/Q123H/N202H, resulted in the highest thermostability, leading to the maximum degradation of PET film (more than 30%; approximately threefold at 70 °C, compared with that of Cut190* at 63 °C).
Journal Article
Hydrogen Peroxide-mediated Inactivation of Two Chloroplastic Peroxidases, Ascorbate Peroxidase and 2-Cys Peroxiredoxin
2008
Reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide, are generated by the photosystems because photoexcited electrons are often generated in excess of requirements for CO2 fixation and used for reducing molecular oxygen, even under normal environmental conditions. Moreover, ROS generation is increased in chloroplasts if plants are subjected to stresses, such as drought, high salinity and chilling. Chloroplast‐localized isoforms of ascorbate peroxidase and possibly peroxiredoxins assume the principal role of scavenging hydrogen peroxide. However, in vitro studies revealed that both types of peroxidases are easily damaged by hydrogen peroxide and lose their catalytic activities. This is one contributing factor for cellular damage that occurs under severe oxidative stress. In this review, I describe mechanisms of hydrogen peroxide‐mediated inactivation of these two enzymes and discuss a reason why they became susceptible to damage by hydrogen peroxide.
Journal Article
cDNA cloning, expression, and antifungal activity of chitinase from Ficus microcarpa latex
2021
Complementary DNA encoding the antifungal chitinase of gazyumaru (Ficus microcarpa), designated GlxChiB, was cloned and expressed in Escherichia coli cells. The results of cDNA cloning showed that the precursor of GlxChiB has an N-terminal endoplasmic reticulum targeting signal and C-terminal vacuolar targeting signal, whereas mature GlxChiB is composed of an N-terminal carbohydrate-binding module family-18 domain (CBM18) and a C-terminal glycoside hydrolase family-19 domain (GH19) with a short linker. To clarify the role of the CBM18 domain in the antifungal activity of chitinase, the recombinant GlxChiB (wild type) and its catalytic domain (CatD) were used in quantitative antifungal assays under different ionic strengths and microscopic observations against the fungus Trichoderma viride. The antifungal activity of the wild type was stronger than that of CatD under all ionic strength conditions used in this assay; however, the antifungal activity of CatD became weaker with increasing ionic strength, whereas that of the wild type was maintained. The results at high ionic strength further verified the contribution of the CBM18 domain to the antifungal ability of GlxChiB. The microscopic observations clearly showed that the wild type acted on both the tips and the lateral wall of fungal hyphae, while CatD acted only on the tips. These results suggest that the CBM18 domain could contribute to the antifungal ability of chitinase through its affinity to the fungal lateral wall by hydrophobic interactions.
Journal Article
A Regulatory Cascade Involving Class II ETHYLENE RESPONSE FACTOR Transcriptional Repressors Operates in the Progression of Leaf Senescence
by
Ohme-Takagi, Masaru
,
Ohta, Masaru
,
Mitsuda, Nobutaka
in
Antibodies
,
Arabidopsis - physiology
,
Arabidopsis Proteins - genetics
2013
Leaf senescence is the final process of leaf development that involves the mobilization of nutrients from old leaves to newly growing tissues. Despite the identification of several transcription factors involved in the regulation of this process, the mechanisms underlying the progression of leaf senescence are largely unknown. Herein, we describe the proteasome-mediated regulation of class II ETHYLENE RESPONSE FACTOR (ERF) transcriptional repressors and involvement of these factors in the progression of leaf senescence in Arabidopsis (Arabidopsis thaliana). Based on previous results showing that the tobacco (Nicotiana tabacum) ERF3 (NtERF3) specifically interacts with a ubiquitin-conjugating enzyme, we examined the stability of NtERF3 in vitro and confirmed its rapid degradation by plant protein extracts. Furthermore, NtERF3 accumulated in plants treated with a proteasome inhibitor. The Arabidopsis class II ERFs AtERF4 and AtERF8 were also regulated by the proteasome and increased with plant aging. Transgenic Arabidopsis plants with enhanced expression of NtERF3, AtERF4, or AtERF8 showed precocious leaf senescence. Our gene expression and chromatin immunoprecipitation analyses suggest that AtERF4 and AtERF8 targeted the EPITHIOSPECIFIER PROTEIN/EPITHIOSPECIFYING SENESCENCE REGULATOR gene and regulated the expression of many genes involved in the progression of leaf senescence. By contrast, an aterf4 aterf8 double mutant exhibited delayed leaf senescence. Our results provide insight into the important role of class II ERFs in the progression of leaf senescence.
Journal Article
A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution
by
Kyoto Institute of Technology
,
Larbat, Romain
,
Villard, Cloé
in
Angiosperms
,
Biosynthesis
,
computer simulation
2021
Furanocoumarins are phytoalexins often cited as an example to illustrate the arms race between plants and herbivorous insects. They are distributed in a limited number of phylogenetically distant plant lineages, but synthesized through a similar pathway, which raised the question of a unique or multiple emergence in higher plants. The furanocoumarin pathway was investigated in the fig tree (Ficus carica, Moraceae). Transcriptomic and metabolomic approaches led to the identification of CYP76F112, a cytochrome P450 catalyzing an original reaction. CYP76F112 emergence was inquired using phylogenetics combined with in silico modeling and site-directed mutagenesis. CYP76F112 was found to convert demethylsuberosin into marmesin with a very high affinity. This atypical cyclization reaction represents a key step within the polyphenol biosynthesis pathway. CYP76F112 evolutionary patterns suggests that the marmesin synthase activity appeared recently in the Moraceae family, through a lineage-specific expansion and diversification. The characterization of CYP76F112 as the first known marmesin synthase opens new prospects for the use of the furanocoumarin pathway. It also supports the multiple acquisition of furanocoumarin in angiosperms by convergent evolution, and opens new perspectives regarding the ability of cytochromes P450 to evolve new functions related to plant adaptation to their environment.
Journal Article
Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190
2022
The enzymatic recycling of polyethylene terephthalate (PET) can be a promising approach to tackle the problem of plastic waste. The thermostability and activity of PET-hydrolyzing enzymes are still insufficient for practical application. Pretreatment of PET waste is needed for bio-recycling. Here, we analyzed the degradation of PET films, packages, and bottles using the newly engineered cutinase Cut190. Using gel permeation chromatography and high-performance liquid chromatography, the degradation of PET films by the Cut190 variant was shown to proceed via a repeating two-step hydrolysis process; initial endo-type scission of a surface polymer chain, followed by exo-type hydrolysis to produce mono/bis(2-hydroxyethyl) terephthalate and terephthalate from the ends of fragmented polymer molecules. Amorphous PET powders were degraded more than twofold higher than amorphous PET film with the same weight. Moreover, homogenization of post-consumer PET products, such as packages and bottles, increased their degradability, indicating the importance of surface area for the enzymatic hydrolysis of PET. In addition, it was required to maintain an alkaline pH to enable continuous enzymatic hydrolysis, by increasing the buffer concentration (HEPES, pH 9.0) depending on the level of the acidic products formed. The cationic surfactant dodecyltrimethylammonium chloride promoted PET degradation via adsorption on the PET surface and binding to the anionic surface of the Cut190 variant. The Cut190 variant also hydrolyzed polyethylene furanoate. Using the best performing Cut190 variant (L136F/Q138A/S226P/R228S/D250C-E296C/Q123H/N202H/K305del/L306del/N307del) and amorphous PET powders, more than 90 mM degradation products were obtained in 3 days and approximately 80 mM in 1 day.Key pointsThe increased surface area of PET promotes its hydrolysis by Cut190, supporting the surface erosion mechanism by a two-step process (endo-type scission of a polymer chain and exo-type hydrolysis of depolymerized fragments).Dodecyltrimethylammonium chloride functioned as a binding module between Cut190 and PET surface, showing the higher hydrolysis rate at 65 °C than at 70 °C in the absence of the detergent.The best performing Cut190 variant produced more than 90 mM degradation products at 63 °C in 3 days and approximately 80 mM at 65 °C in one day, using amorphous PET powders. Additionally, polyethylene furanoate was highly hydrolyzed at 63 °C in 3 days by the Cut190 variant.
Journal Article
Overexpressing the HD-Zip class II transcription factor EcHB1 from Eucalyptus camaldulensis increased the leaf photosynthesis and drought tolerance of Eucalyptus
2019
Alteration in the leaf mesophyll anatomy by genetic modification is potentially a promising tool for improving the physiological functions of trees by improving leaf photosynthesis. Homeodomain leucine zipper (HD-Zip) transcription factors are candidates for anatomical alterations of leaves through modification of cell multiplication, differentiation, and expansion. Full-length cDNA encoding a
Eucalyptus camaldulensis
HD-Zip class II transcription factor (EcHB1) was over-expressed
in vivo
in the hybrid
Eucalyptus
GUT5 generated from
Eucalyptus grandis
and
Eucalyptus urophylla
. Overexpression of
EcHB1
induced significant modification in the mesophyll anatomy of
Eucalyptus
with enhancements in the number of cells and chloroplasts on a leaf-area basis. The leaf-area-based photosynthesis of
Eucalyptus
was improved in the
EcHB1
-overexpression lines, which was due to both enhanced CO
2
diffusion into chloroplasts and increased photosynthetic biochemical functions through increased number of chloroplasts per unit leaf area. Additionally, overexpression of
EcHB1
suppressed defoliation and thus improved the growth of
Eucalyptus
trees under drought stress, which was a result of reduced water loss from trees due to the reduction in leaf area with no changes in stomatal morphology. These results gave us new insights into the role of the HD-Zip II gene.
Journal Article
Gene expression of PLAT and ATS3 proteins increases plant resistance to insects
by
Savadogo, Eric Hyrmeya
,
Yasuda, Junko
,
Miura, Kenji
in
Agriculture
,
agroinfiltration
,
Animals
2021
Laticifer cells in plants contain large amounts of anti-microbe or anti-insect proteins and are involved in plant defense against biotic stresses. We previously found that PLAT proteins accumulate in laticifers of fig tree (Ficus carica) at comparable levels to those of chitinases, and the transcript level of ATS3, another PLAT domain-containing protein, is highest in the transcriptome of laticifers of Euphorbia tirucalli. In this study, we investigated whether the PLAT domain-containing proteins are involved in defense against insects. Larvae of the lepidopteran Spodoptera litura showed retarded growth when fed with Nicotiana benthamiana leaves expressing F. carica PLAT or E. tirucalli ATS3 genes, introduced by agroinfiltration using expression vector pBYR2HS. Transcriptome analysis of these leaves indicated that ethylene and jasmonate signaling were activated, leading to increased expression of genes for PR-1, β-1,3-glucanase, PR5 and trypsin inhibitors, suggesting an indirect mechanism of PLAT- and ATS3-induced resistance in the host plant. Direct cytotoxicity of PLAT and ATS3 to insects was also possible because heterologous expression of the corresponding genes in Drosophila melanogaster caused apoptosis-mediated cell death in this insect. Larval growth retardation of S. litura occurred when they were fed radish sprouts, a good host for agroinfiltration, expressing any of nine homologous genes of dicotyledon Arabidopsis thaliana, monocotyledon Brachypodium distachyon, conifer Picea sitchensis and liverwort Marchantia polymorpha. Of these nine genes, the heterologous expression of A. thaliana AT5G62200 and AT5G62210 caused significant increases in larval death. These results indicated that the PLAT protein family has largely conserved anti-insect activity in the plant kingdom (249 words).
Journal Article
Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport
by
Amano, Ikuko
,
Suzuki, Hideyuki
,
Shitan, Nobukazu
in
Allelochemicals
,
Animal reproduction
,
Arabidopsis
2018
The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants.
Journal Article
Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants
by
Kyoto Institute of Technology
,
Takemura, Tomoya
,
Bourgaud, Frédéric
in
Adaptation
,
ancestry
,
Apiaceae
2020
Furanocoumarins (FCs) are plant-specialized metabolites with potent allelochemical properties. The distribution of FCs is scattered with a chemotaxonomical tendency towards four distant families with highly similar FC pathways. The mechanism by which this pathway emerged and spread in plants has not been elucidated. Furanocoumarin biosynthesis was investigated in Ficus carica (fig, Moraceae), focusing on the first committed reaction catalysed by an umbelliferone dimethylallyltransferase (UDT). Comparative RNA-seq analysis among latexes of different fig organs led to the identification of a UDT. The phylogenetic relationship of this UDT to previously reported Apiaceae UDTs was evaluated. The expression pattern of F. carica prenyltransferase 1 (FcPT1) was related to the FC contents in different latexes. Enzymatic characterization demonstrated that one of the main functions of FcPT1 is UDT activity. Phylogenetic analysis suggested that FcPT1 and Apiaceae UDTs are derived from distinct ancestors, although they both belong to the UbiA superfamily. These findings are supported by significant differences in the related gene structures. This report describes the identification of FcPT1 involved in FC biosynthesis in fig and provides new insights into multiple origins of the FC pathway and, more broadly, into the adaptation of plants to their environments.
Journal Article