Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Klassen, Roland"
Sort by:
Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in Saccharomyces cerevisiae
Pus1-dependent pseudouridylation occurs in many tRNAs and at multiple positions, yet the functional impact of this modification is incompletely understood. We analyzed the consequences of PUS1 deletion on the essential decoding of CAG (Gln) codons by tRNAGlnCUG in yeast. Synthetic lethality was observed upon combining the modification defect with destabilized variants of tRNAGlnCUG, pointing to a severe CAG-decoding defect of the hypomodified tRNA. In addition, we demonstrated that misreading of UAG stop codons by a tRNAGlnCUG variant is positively affected by Pus1. Genetic approaches further indicated that mildly elevated temperature decreases the decoding efficiency of CAG and UAG via destabilized tRNAGlnCAG variants. We also determined the misreading of CGC (Arg) codons by tRNAHisGUG, where the CGC decoder tRNAArgICG contains Pus1-dependent pseudouridine, but not the mistranslating tRNAHis. We found that the absence of Pus1 increased CGC misreading by tRNAHis, demonstrating a positive role of the modification in the competition against non-synonymous near-cognate tRNA. Part of the in vivo decoding defects and phenotypes in pus1 mutants and strains carrying destabilized tRNAGlnCAG were suppressible by additional deletion of the rapid tRNA decay (RTD)-relevant MET22, suggesting the involvement of RTD-mediated tRNA destabilization.
Roles of Elongator Dependent tRNA Modification Pathways in Neurodegeneration and Cancer
Transfer RNA (tRNA) is subject to a multitude of posttranscriptional modifications which can profoundly impact its functionality as the essential adaptor molecule in messenger RNA (mRNA) translation. Therefore, dynamic regulation of tRNA modification in response to environmental changes can tune the efficiency of gene expression in concert with the emerging epitranscriptomic mRNA regulators. Several of the tRNA modifications are required to prevent human diseases and are particularly important for proper development and generation of neurons. In addition to the positive role of different tRNA modifications in prevention of neurodegeneration, certain cancer types upregulate tRNA modification genes to sustain cancer cell gene expression and metastasis. Multiple associations of defects in genes encoding subunits of the tRNA modifier complex Elongator with human disease highlight the importance of proper anticodon wobble uridine modifications (xm5U34) for health. Elongator functionality requires communication with accessory proteins and dynamic phosphorylation, providing regulatory control of its function. Here, we summarized recent insights into molecular functions of the complex and the role of Elongator dependent tRNA modification in human disease.
Loss of anticodon wobble uridine modifications affects tRNA(Lys) function and protein levels in Saccharomyces cerevisiae
In eukaryotes, wobble uridines in the anticodons of tRNA(Lys)UUU, tRNA(Glu)UUC and tRNA(Gln)UUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined loss of tRNA anticodon modifications (mcm5U and s2U) without a lethal effect. However, an elp3 disruption strain displays synthetic sick interaction and synergistic temperature sensitivity when combined with either uba4 or urm1 mutations, suggesting major translational defects in the absence of mcm5s2U modifications. Consistent with this notion, we find cellular protein levels drastically decreased in an elp3uba4 double mutant and show that this effect as well as growth phenotypes can be partially rescued by excess of tRNA(Lys)UUU. These results may indicate a global translational or protein homeostasis defect in cells simultaneously lacking mcm5 and s2 wobble uridine modification that could account for growth impairment and mainly originates from tRNA(Lys)UUU hypomodification and malfunction.
PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication
DNA polymerase δ (Polδ) plays an essential role in replication from yeast to humans. Polδ in Saccharomyces cerevisiae is comprised of three subunits, the catalytic subunit Pol3 and the accessory subunits Pol31 and Pol32. Yeast Polδ exhibits a very high processivity in synthesizing DNA with the proliferating cell nuclear antigen (PCNA) sliding clamp; however, it has remained unclear how Polδ binds PCNA to achieve its high processivity. Here we show that PCNA interacting protein (PIP) motifs in all three subunits contribute to PCNA-stimulated DNA synthesis by Polδ, and mutational inactivation of all three PIP motifs abrogates its ability to synthesize DNA with PCNA. Genetic analyses of mutations in these PIPs have revealed that in the absence of functional Pol32 PIP domain, PCNA binding by both the Pol3 and Pol31 subunits becomes essential for cell viability. Based on our biochemical and genetic studies we infer that yeast Polδ can simultaneously utilize all three PIP motifs during PCNA-dependent DNA synthesis, and suggest that Polδ binds the PCNA homotrimer via its three subunits. We consider the implications of these observations for Polδ’s role in DNA replication.
DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B
Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity.
DPH1 Gene Mutations Identify a Candidate SAM Pocket in Radical Enzyme Dph1•Dph2 for Diphthamide Synthesis on EF2
In eukaryotes, the Dph1•Dph2 dimer is a non-canonical radical SAM enzyme. Using iron-sulfur (FeS) clusters, it cleaves the cosubstrate S-adenosyl-methionine (SAM) to form a 3-amino-3-carboxy-propyl (ACP) radical for the synthesis of diphthamide. The latter decorates a histidine residue on elongation factor 2 (EF2) conserved from archaea to yeast and humans and is important for accurate mRNA translation and protein synthesis. Guided by evidence from archaeal orthologues, we searched for a putative SAM-binding pocket in Dph1•Dph2 from Saccharomyces cerevisiae. We predict an SAM-binding pocket near the FeS cluster domain that is conserved across eukaryotes in Dph1 but not Dph2. Site-directed DPH1 mutagenesis and functional characterization through assay diagnostics for the loss of diphthamide reveal that the SAM pocket is essential for synthesis of the décor on EF2 in vivo. Further evidence from structural modeling suggests particularly critical residues close to the methionine moiety of SAM. Presumably, they facilitate a geometry specific for SAM cleavage and ACP radical formation that distinguishes Dph1•Dph2 from classical radical SAM enzymes, which generate canonical 5′-deoxyadenosyl (dAdo) radicals.
Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.
Role of Pseudouridine Formation by Deg1 for Functionality of Two Glutamine Isoacceptor tRNAs
Loss of Deg1/Pus3 and concomitant elimination of pseudouridine in tRNA at positions 38 and 39 (ψ38/39) was shown to specifically impair the function of tRNAGlnUUG under conditions of temperature-induced down-regulation of wobble uridine thiolation in budding yeast and is linked to intellectual disability in humans. To further characterize the differential importance of the frequent ψ38/39 modification for tRNAs in yeast, we analyzed the in vivo function of non-sense suppressor tRNAs SUP4 and sup70-65 in the absence of the modifier. In the tRNATyrGψA variant SUP4, UAA read-through is enabled due to an anticodon mutation (UψA), whereas sup70-65 is a mutant form of tRNAGlnCUG (SUP70) that mediates UAG decoding due to a mutation of the anticodon-loop closing base pair (G31:C39 to A31:C39). While SUP4 function is unaltered in deg1/pus3 mutants, the ability of sup70-65 to mediate non-sense suppression and to complement a genomic deletion of the essential SUP70 gene is severely compromised. These results and the differential suppression of growth defects in deg1 mutants by multi-copy SUP70 or tQ(UUG) are consistent with the interpretation that ψ38 is most important for tRNAGlnUUG function under heat stress but becomes crucial for tRNAGlnCUG as well when the anticodon loop is destabilized by the sup70-65 mutation. Thus, ψ38/39 may protect the anticodon loop configuration from disturbances by loss of other modifications or base changes.
Collaboration of tRNA modifications and elongation factor eEF1A in decoding and nonsense suppression
Transfer RNA (tRNA) from all domains of life contains multiple modified nucleosides, the functions of which remain incompletely understood. Genetic interactions between tRNA modification genes in Saccharomyces cerevisiae suggest that different tRNA modifications collaborate to maintain translational efficiency. Here we characterize such collaborative functions in the ochre suppressor tRNA SUP4 . We quantified ochre read-through efficiency in mutants lacking either of the 7 known modifications in the extended anticodon stem loop (G26-C48). Absence of U34, U35, A37, U47 and C48 modifications partially impaired SUP4 function. We systematically combined modification defects and scored additive or synergistic negative effects on SUP4 performance. Our data reveal different degrees of functional redundancy between specific modifications, the strongest of which was demonstrated for those occurring at positions U34 and A37. SUP4 activity in the absence of critical modifications, however, can be rescued in a gene dosage dependent fashion by TEF1 which encodes elongation factor eEF1A required for tRNA delivery to the ribosome. Strikingly, the rescue ability of higher-than-normal eEF1A levels extends to tRNA modification defects in natural non-suppressor tRNAs suggesting that elevated eEF1A abundance can partially compensate for functional defects induced by loss of tRNA modifications.
Loss of Elongator- and KEOPS-Dependent tRNA Modifications Leads to Severe Growth Phenotypes and Protein Aggregation in Yeast
Modifications found in the Anticodon Stem Loop (ASL) of tRNAs play important roles in regulating translational speed and accuracy. Threonylcarbamoyl adenosine (t6A37) and 5-methoxycarbonyl methyl-2-thiouridine (mcm5s2U34) are critical ASL modifications that have been linked to several human diseases. The model yeast Saccharomyces cerevisiae is viable despite the absence of both modifications, growth is however greatly impaired. The major observed consequence is a subsequent increase in protein aggregates and aberrant morphology. Proteomic analysis of the t6A-deficient strain (sua5 mutant) revealed a global mistranslation leading to protein aggregation without regard to physicochemical properties or t6A-dependent or biased codon usage in parent genes. However, loss of sua5 led to increased expression of soluble proteins for mitochondrial function, protein quality processing/trafficking, oxidative stress response, and energy homeostasis. These results point to a global function for t6A in protein homeostasis very similar to mcm5/s2U modifications.