Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
18
result(s) for
"Kleffmann, Jörg"
Sort by:
Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid
by
Donders, Chantal
,
George, Christian
,
Kleffmann, Jörg
in
Acid production
,
Air pollution
,
Atmosphere - chemistry
2006
Nitrous acid: the day job
Nitrous acid is a major photochemical precursor of the hydroxyl radical, a key oxidant in the degradation of air pollutants in the lower atmosphere. The gas is known to accumulate in the lower troposphere at night, but the recent discovery of enhanced concentrations of nitrous acid measured at various sites both urban and rural during daytime was a surprise. Now the light-induced reaction between soil humic acid and nitrogen dioxide has been put forward as an explanation. The observed reaction rate of nitrous acid formation suggests that this production mechanism could be an important factor in the chemistry of the lower troposphere
Nitrous acid is a significant photochemical precursor of the hydroxyl radical
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
, the key oxidant in the degradation of most air pollutants in the troposphere. The sources of nitrous acid in the troposphere, however, are still poorly understood. Recent atmospheric measurements
7
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
revealed a strongly enhanced formation of nitrous acid during daytime via unknown mechanisms. Here we expose humic acid films to nitrogen dioxide in an irradiated tubular gas flow reactor and find that reduction of nitrogen dioxide on light-activated humic acids is an important source of gaseous nitrous acid. Our findings indicate that soil and other surfaces containing humic acid exhibit an organic surface photochemistry that produces reductive surface species, which react selectively with nitrogen dioxide. The observed rate of nitrous acid formation could explain the recently observed high daytime concentrations of nitrous acid in the boundary layer, the photolysis of which accounts for up to 60 per cent of the integrated hydroxyl radical source strengths
3
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
. We suggest that this photo-induced nitrous acid production on humic acid could have a potentially significant impact on the chemistry of the lowermost troposphere.
Journal Article
Atmospheric measurements at Mt. Tai – Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer
2022
A comprehensive field campaign, with measurements of HONO and related parameters, was conducted in summer 2018 at the foot (150 m a.s.l.) and the summit (1534 m a.s.l.) of Mt. Tai (Shandong province, China). At the summit station, high HONO mixing ratios were observed (mean ± 1σ: 133 ± 106 pptv, maximum: 880 pptv), with a diurnal noontime peak (mean ± 1σ: 133 ± 72 pptv at 12:30 local time). Constraints on the kinetics of aerosol-derived HONO sources (NO2 uptake on the aerosol surface and particulate nitrate photolysis) were performed and discussed, which enables a better understanding of the interaction of HONO and aerosols, especially in the polluted North China Plain. Various evidence of air mass transport from the ground to the summit level was provided. Furthermore, daytime HONO formation from different paths and its role in radical production were quantified and discussed. We found that the homogeneous reaction NO + OH could only explain 8.0 % of the daytime HONO formation, resulting in strong unknown sources (Pun). Campaigned-averaged Pun was about 290 ± 280 pptv h−1, with a maximum of about 1800 pptv h−1. Aerosol-derived HONO formation mechanisms were not the major sources of Pun at the summit station. Their contributions to daytime HONO formation varied from negligible to moderate (similar to NO + OH), depending on the chemical kinetic parameters used. Coupled with sensitivity tests on the kinetic parameters used, the NO2 uptake on the aerosol surface and particulate nitrate photolysis contributed 1.5 %–19 % and 0.6 %–9.6 % of the observed Pun, respectively. Based on synchronous measurements at the foot and the summit station, an amount of field evidence was proposed to support the finding that the remaining majority (70 %–98 %) of Pun was dominated by the rapid vertical transport from the ground to the summit level and heterogeneous formation on the mountain surfaces during transport. HONO photolysis at the summit level initialized daytime photochemistry and still represented an essential OH source in the daytime, with a contribution of about one-quarter of O3. We provided evidence that ground-derived HONO played a significant role in the oxidizing capacity of the upper boundary layer through the enhanced vertical air mass exchange driven by mountain winds. The follow-up impacts should be considered in regional chemistry transport models.
Journal Article
Atmospheric measurements at Mt. Tai – Part II: HONO budget and radical (RO x + NO 3 ) chemistry in the lower boundary layer
2022
In the summer of 2018, a comprehensive field campaign, with measurements on HONO and related parameters, was conducted at the foot (150 m a.s.l.) and the summit of Mt. Tai (1534 m a.s.l.) in the central North China Plain (NCP). With the implementation of a 0-D box model, the HONO budget with six additional sources and its role in radical chemistry at the foot station were explored. We found that the model default source, NO + OH, could only reproduce 13 % of the observed HONO, leading to a strong unknown source strength of up to 3 ppbv h−1. Among the additional sources, the NO2 uptake on the ground surface dominated (∼ 70 %) nighttime HONO formation, and its photo-enhanced reaction dominated (∼ 80 %) daytime HONO formation. Their contributions were sensitive to the mixing layer height (MLH) used for the parameterizations, highlighting the importance of a reasonable MLH for exploring ground-level HONO formation in 0-D models and the necessity of gradient measurements. A ΔHONO/ΔNOx ratio of 0.7 % for direct emissions from vehicle exhaust was inferred, and a new method to quantify its contribution to the observations was proposed and discussed. Aerosol-derived sources, including the NO2 uptake on the aerosol surface and the particulate nitrate photolysis, did not lead to significant HONO formation, with their contributions lower than NO + OH. HONO photolysis in the early morning initialized the daytime photochemistry at the foot station. It was also a substantial radical source throughout the daytime, with contributions higher than O3 photolysis to OH initiation. Moreover, we found that OH dominated the atmospheric oxidizing capacity in the daytime, while modeled NO3 appeared to be significant at night. Peaks of modeled NO3 time series and average diurnal variation reached 22 and 9 pptv, respectively. NO3-induced reactions contribute 18 % of nitrate formation potential (P(HNO3)) and 11 % of the isoprene (C5H8) oxidation throughout the whole day. At night, NO3 chemistry led to 51 % and 44 % of P(HNO3) or the C5H8 oxidation, respectively, implying that NO3 chemistry could significantly affect nighttime secondary organic and inorganic aerosol formation in this high-O3 region. Considering the severe O3 pollution in the NCP and the very limited NO3 measurements, we suggest that besides direct measurements of HOx and primary HOx precursors (O3, HONO, alkenes, etc.), NO3 measurements should be conducted to understand the atmospheric oxidizing capacity and air pollution formation in this and similar regions.
Journal Article
Diurnal fluxes of HONO above a crop rotation
2017
Nitrous acid (HONO) fluxes were measured above an agricultural field site near Paris during different seasons. Above bare soil, different crops were measured using the aerodynamic gradient (AG) method. Two LOPAPs (LOng Path Absorption Photometer) were used to determine the HONO gradients between two heights. During daytime mainly positive HONO fluxes were observed, which showed strong correlation with the product of the NO2 concentration and the long wavelength UV light intensity, expressed by the photolysis frequency J(NO2). These results are consistent with HONO formation by photosensitized heterogeneous conversion of NO2 on soil surfaces as observed in recent laboratory studies. An additional influence of the soil temperature on the HONO flux can be explained by the temperature-dependent HONO adsorption on the soil surface. A parameterization of the HONO flux at this location with NO2 concentration, J(NO2), soil temperature and humidity fits reasonably well all flux observations at this location.
Journal Article
A source for the continuous generation of pure and quantifiable HONO mixtures
2022
A continuous source for the generation of pure HONO mixtures was developed and characterized, which is based on the Henry's law solubility of HONO in acidic aqueous solutions. With the help of a peristaltic pump, diluted nitrite and sulfuric acid solutions are mixed in a temperature-controlled stripping coil, which is operated with pure nitrogen or synthetic air at gas flow rates of 0.5–2 L min−1. Caused by the acidic conditions of the aqueous phase (pH ≈ 2.5), nitrite is almost completely converted into HONO, which partitions to the gas phase limited by its known solubility in water. The source shows a fast time response of ∼ 2 min (0 %–90 %) at higher concentrations and an excellent long-term stability (2σ noise < 1 %). The HONO emission of the source perfectly correlates with the nitrite concentration from the sub-ppb range up to 500 ppb. The rate of NOx formation increases quadratically with the HONO concentration from non-detectable values at atmospheric relevant HONO concentrations reaching a NOx content of 1.6 % at 500 ppb. A general equation based on Henry's law is developed, whereby the HONO concentration of the source can be calculated using measured experimental parameters, i.e. nitrite concentration, liquid flow rates, gas flow rate, pH of the solution, and temperature of the stripping coil. In the equation, the known Henry's law constant of HONO in sulfuric acid solutions is used. For the calculation of the effective Henry's law constant, the acid dissociation equilibrium of HONO / nitrite is used as a variable to adjust the theoretical HONO concentration to the measured values. From the average of all experimental data the equilibrium of HONO / nitrite is described well by pKa=1021.53/T-0.449. The pKa of 3.0 ± 0.1 (1σ) at 25 ∘C is in good agreement with the range of 2.8–3.28 published in former studies. A standard deviation between all measured and theoretical HONO concentrations of only ±3.8 % was observed, and a conservative upper-limit accuracy of the HONO concentration of better 10 % is estimated. Thus, for the first time, a stable HONO source is developed which can be used for the absolute calibration of HONO instruments.
Journal Article
Snowpack nitrate photolysis drives the summertime atmospheric nitrous acid (HONO) budget in coastal Antarctica
by
Frey, Markus M.
,
Kaiser, Jan
,
Bond, Amelia M. H.
in
Acids
,
Air pollution
,
Atmospheric boundary layer
2023
Measurements of atmospheric nitrous acid (HONO) amount fraction and flux density above snow were carried out using a long-path absorption photometer at Halley station in coastal Antarctica between 22 January and 3 February 2022. The mean ±1σ HONO amount fraction was (2.1 ± 1.5) pmol mol−1 and showed a diurnal cycle (range of 1.0–3.2 pmol mol−1) with a maximum at solar noon. These HONO amount fractions are generally lower than have been observed at other Antarctic locations. The flux density of HONO from the snow, measured between 31 January and 1 February 2022, was between 0.5 and 3.4×1012 m-2s-1 and showed a decrease during the night. The measured flux density is close to the calculated HONO production rate from photolysis of nitrate present in the snow. A simple box model of HONO sources and sinks showed that the flux of HONO from the snow makes a >10 times larger contribution to the HONO budget than its formation through the reaction of OH and NO. Ratios of these HONO amount fractions to NOx measurements made in summer 2005 are low (0.15–0.35), which we take as an indication of our measurements being comparatively free from interferences. Further calculations suggest that HONO photolysis could produce up to 12 pmolmol-1h-1 of OH, approximately half that produced by ozone photolysis, which highlights the importance of HONO snow emissions as an OH source in the atmospheric boundary layer above Antarctic snowpacks.
Journal Article
Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates
2018
The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100 % higher than during daytime. The median daily evaporation is 4.3 mm d−1 in July and 1.1 mm d−1 in December. The annual evaporation of the water surface at the measurement location was 994±88 mm a−1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley–Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0.92 and 0.97. In summary, this study introduces a new approach to measure lake evaporation with a station located at the shoreline, which is also transferable to other lakes. It provides the first directly measured Dead Sea evaporation rates as well as applicable methods for evaporation calculation. The first one enables us to further close the Dead Sea water budget, and the latter one enables us to facilitate water management in the region.
Journal Article
Understanding in situ ozone production in the summertime through radical observations and modelling studies during the Clean air for London project (ClearfLo)
by
Dunmore, Rachel
,
Hopkins, James R.
,
Laufs, Sebastian
in
Agreements
,
Air pollution
,
Aromatic compounds
2018
Measurements of OH, HO2, RO2i (alkene and aromatic-related RO2) and total RO2 radicals taken during the ClearfLo campaign in central London in the summer of 2012 are presented. A photostationary steady-state calculation of OH which considered measured OH reactivity as the OH sink term and the measured OH sources (of which HO2+ NO reaction and HONO photolysis dominated) compared well with the observed levels of OH. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2, however, highlighted a substantial discrepancy between radical observations under lower NOx conditions ([NO] < 1 ppbv), typically experienced during the afternoon hours, and indicated that the model was missing a significant peroxy radical sink; the model overpredicted HO2 by up to a factor of 10 at these times. Known radical termination steps, such as HO2 uptake on aerosols, were not sufficient to reconcile the model–measurement discrepancies alone, suggesting other missing termination processes. This missing sink was most evident when the air reaching the site had previously passed over central London to the east and when elevated temperatures were experienced and, hence, contained higher concentrations of VOCs. Uncertainties in the degradation mechanism at low NOx of complex biogenic and diesel related VOC species, which were particularly elevated and dominated OH reactivity under these easterly flows, may account for some of the model–measurement disagreement. Under higher [NO] (> 3 ppbv) the box model increasingly underpredicted total [RO2]. The modelled and observed HO2 were in agreement, however, under elevated NO concentrations ranging from 7 to 15 ppbv. The model uncertainty under low NO conditions leads to more ozone production predicted using modelled peroxy radical concentrations (∼ 3 ppbv h−1) versus ozone production from peroxy radicals measured (∼ 1 ppbv h−1). Conversely, ozone production derived from the predicted peroxy radicals is up to an order of magnitude lower than from the observed peroxy radicals as [NO] increases beyond 7 ppbv due to the model underprediction of RO2 under these conditions.
Journal Article
Nitrous acid at Concordia (inland site) and Dumont d'Urville (coastal site), East Antarctica
by
Legrand, Michel
,
Gallée, Hubert
,
Kleffmann, Jörg
in
Air masses
,
Atmospheric sciences
,
Earth sciences
2012
During the austral summer 2010/2011, nitrous acid (HONO) was investigated for the first time at Concordia (75°06′S, 123°33′E) and Dumont D'Urville (66°40′S, 140°01′E), two sites located in East Antarctica. Hereby, for the first time in Antarctica, HONO was measured by deploying a long path absorption photometer (LOPAP). At Concordia, HONO mixing ratios at 1 m above the snow surface ranged between 5 and 60 pptv from end of December 2010 to mid January 2011. Lowest levels were observed under cloudy conditions. Levels exhibit a diurnal cycle with a maximum in the morning (around 06:00) and in the evening (around 21:00). At Dumont d'Urville, background mixing ratios remained close to 2 pptv in February 2011. No clear diurnal cycles were detected at that site but several events of air masses export from inland Antarctica were encountered with enhanced HONO levels (10 pptv) at night. These first HONO data gained in East Antarctica are discussed in terms of sources and sinks along with synoptic weather conditions. Key Points First LOPAP nitrous acid data reveal surprisingly high levels in Antarctica
Journal Article
A relaxed eddy accumulation
2022
In the present study a relaxed eddy accumulation (REA) system for the quantification of vertical fluxes of nitrous acid (HONO) was developed and tested. The system is based on a three-channel long-path absorption photometer (LOPAP) instrument, for which two channels are used for the updrafts and downdrafts, respectively, and a third one for the correction of chemical interferences. The instrument is coupled to a REA gas inlet, for which an ultrasonic anemometer controls two fast magnetic valves to probe the two channels of the LOPAP instrument depending on the vertical wind direction. A software (PyREA) was developed, which controls the valves and measurement cycles, which regularly alternates between REA, zero and parallel ambient measurements. In addition, the assignment of the updrafts and downdrafts to the physical LOPAP channels is periodically alternated, to correct for differences in the interferences of the different air masses. During the study, only small differences of the interferences were identified for the updrafts and downdrafts excluding significant errors when using only one interference channel. In laboratory experiments, high precision of the two channels and the independence of the dilution-corrected HONO concentrations on the length of the valve switching periods were demonstrated.
Journal Article