Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Klein, Juliana D"
Sort by:
Local adaptation with gene flow in a highly dispersive shark
by
Maduna, Simo N.
,
Dicken, Matthew L.
,
Potts, Warren M.
in
Adaptation
,
adaptive divergence
,
Bioclimatology
2024
Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non‐model species, gene–environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome‐wide SNPs obtained through a restriction site‐associated DNA method (3RAD). A combination of differentiation‐based genome‐scan (outflank) and genotype–environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation‐based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations.
Journal Article
Distribution of genetic diversity reveals colonization patterns and philopatry of the loggerhead sea turtles across geographic scales
by
Roque, Silvana Monteiro
,
Baltazar-Soares, Miguel
,
Lomba, João Pina
in
631/181
,
631/181/2474
,
631/208
2020
Understanding the processes that underlie the current distribution of genetic diversity in endangered species is a goal of modern conservation biology. Specifically, the role of colonization and dispersal events throughout a species’ evolutionary history often remains elusive. The loggerhead sea turtle (
Caretta caretta
) faces multiple conservation challenges due to its migratory nature and philopatric behaviour. Here, using 4207 mtDNA sequences, we analysed the colonisation patterns and distribution of genetic diversity within a major ocean basin (the Atlantic), a regional rookery (Cabo Verde Archipelago) and a local island (Island of Boa Vista, Cabo Verde). Data analysis using hypothesis-driven population genetic models suggests the colonization of the Atlantic has occurred in two distinct waves, each corresponding to a major mtDNA lineage. We propose the oldest lineage entered the basin via the isthmus of Panama and sequentially established aggregations in Brazil, Cabo Verde and in the area of USA and Mexico. The second lineage entered the Atlantic via the Cape of Good Hope, establishing colonies in the Mediterranean Sea, and from then on, re-colonized the already existing rookeries of the Atlantic. At the Cabo Verde level, we reveal an asymmetric gene flow maintaining links across island-specific nesting groups, despite significant genetic structure. This structure stems from female philopatric behaviours, which could further be detected by weak but significant differentiation amongst beaches separated by only a few kilometres on the island of Boa Vista. Exploring biogeographic processes at diverse geographic scales improves our understanding of the complex evolutionary history of highly migratory philopatric species. Unveiling the past facilitates the design of conservation programmes targeting the right management scale to maintain a species’ evolutionary potential.
Journal Article
Reproductive philopatry in a coastal shark drives age-related population structure
by
Aletta E Bester-van der Merwe
,
Teske, Peter R
,
Klein, Juliana D
in
Age composition
,
Carcharias taurus
,
Closures
2019
The cosmopolitan lamniform shark Carcharias taurus (commonly known as the ragged-tooth, grey nurse or sand tiger shark) is threatened by overexploitation in parts of its range. Return migrations of females to specific nursery areas suggest that females exhibit reproductive philopatry, a behaviour that over time might lead to genetically isolated subpopulations over various spatial scales. To investigate genetic evidence for reproductive philopatry, genetic data from mitochondrial and microsatellite markers were generated for 104 young-of-the-year and juvenile sharks. Comparing the smallest versus the largest young sharks revealed a pattern of size-related differentiation between nurseries that was only found in the smaller size class. This not only confirms reproductive philopatry of their mothers, but is also in line with previous observations of larger juvenile sharks increasing their migration range and moving between sites. Our results highlight the need to target young-of-the-year sharks when investigating reproductive philopatry to exclude roaming individuals that obscure size-related signals of genetic differentiation. Given the species’ high susceptibility to overexploitation, the evidence for reproductive philopatry is of direct importance to the management and conservation of C. taurus worldwide. As many nursery areas as possible should be protected to ensure that the number of locally resident juveniles and the pool of the returning females remain stable in the long term. This may warrant protected areas, or time-area closures, prohibiting exploitation in the nursery areas during pupping season.
Journal Article
A globally threatened shark, Carcharias taurus, shows no population decline in South Africa
by
der Merwe, Aletta E. Bester-van
,
Dicken, Matthew L.
,
Klein, Juliana D.
in
631/158/672
,
631/208/457
,
Animals
2020
Knowledge about the demographic histories of natural populations helps to evaluate their conservation status, and potential impacts of natural and anthropogenic pressures. In particular, estimates of effective population size obtained through molecular data can provide useful information to guide management decisions for vulnerable populations. The spotted ragged-tooth shark,
Carcharias taurus
(also known as the sandtiger or grey nurse shark), is widely distributed in warm-temperate and subtropical waters, but has suffered severe population declines across much of its range as a result of overexploitation. Here, we used multilocus genotype data to investigate the demographic history of the South African
C. taurus
population. Using approximate Bayesian computation and likelihood-based importance sampling, we found that the population underwent a historical range expansion that may have been linked to climatic changes during the late Pleistocene. There was no evidence for a recent anthropogenic decline. Together with census data suggesting a stable population, these results support the idea that fishing pressure and other threats have so far not been detrimental to the local
C. taurus
population. The results reported here indicate that South Africa could possibly harbour the last remaining, relatively pristine population of this widespread but vulnerable top predator.
Journal Article
A globally threatened shark, Carcharias taurus, shows no population decline in South Africa
Knowledge about the demographic histories of natural populations helps to evaluate their conservation status, and potential impacts of natural and anthropogenic pressures. In particular, estimates of effective population size obtained through molecular data can provide useful information to guide management decisions for vulnerable populations. The spotted ragged-tooth shark Carcharias taurus (also known as the sandtiger or grey nurse shark) is widely distributed in warm-temperate and subtropical waters, but has suffered severe population declines across much of its range as a result of overexploitation. Here, we used multilocus genotype data to investigate the demographic history of the South African C. taurus population. Using approximate Bayesian computation and likelihood-based importance sampling, it was found that the population underwent a historical range expansion that may have been linked to climatic changes during the late Pleistocene. There was no evidence for a recent anthropogenic decline. Together with census data suggesting a stable population, these results support the idea that fishing pressure and other threats have so far not been detrimental to the local C. Taurus population. The results reported here indicate that South Africa could possibly harbour the last remaining, relatively pristine population of this widespread but vulnerable top predator.
Acute-phase proteins during inflammatory reaction by bacterial infection: Fish-model
2019
Acute-phase protein (APPs) serum levels have been studied in many human diseases, and their components contribute to host defense during the evolution of infectious diseases by acting as part of the innate immune system. Based on the importance of establishing new experimental models, the present investigation evaluated the modulation of APPs following inflammatory stimulus by the inoculation of
Aeromonas hydrophila
in tilapias. Fish were sampled 6 and 24 hours post-infection. Tilapias presented increase of positive APPs such as ceruloplasmin, haptoglobin, alpha-2-macroglobulin and complement C3, as well as decrease of negative APPs such as albumin and transferrin. The protein response of tilapias during the course of bacterial infection showed correlation with the kinetics of cellular accumulation in the inflamed focus with significant increase of granulocytes, thrombocytes, lymphocytes and macrophages. However, granulocytes were the predominant cells, associated with increment in the reactive oxygen species (ROS) production. Showing responses similar to those observed in humans, the modulation of APPs and the kinetics of cellular accumulation in the exudate demonstrate the feasibility of this alternative experimental model for advances and studies to understand changes in pathophysiological mechanisms of acute inflammatory reaction due to bacterial infection.
Journal Article
Non-bee insects are important contributors to global crop pollination
by
Mandelik, Yael
,
Brittain, Claire
,
Stanley, Dara A.
in
Agricultural and Veterinary sciences
,
Agricultural Science
,
Agriculture, Forestry and Fisheries
2016
Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.
Journal Article
Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance
by
Holzschuh, Andrea
,
Mandelik, Yael
,
Rundlöf, Maj
in
Abundance
,
Agricultural land
,
Animal and plant ecology
2013
The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
Journal Article
Definition of factors associated with negative antibody response after COVID-19 vaccination in patients with hematological diseases
by
Reiter, Andreas
,
Popp, Henning D
,
Neumaier, Michael
in
Antibodies
,
Coronaviruses
,
COVID-19 vaccines
2022
Abstract COVID-19 in patients with hematological diseases is associated with a high mortality. Moreover, preventive vaccination demonstrated reduced efficacy and the knowledge on influencing factors is limited. In this single-center study, antibody levels of the SARS-CoV-2 spike protein were measured ≥ 2 weeks after 2nd COVID-19 vaccination with a concentration ≥ 0.8 U/mL considered positive. Between July and October 2021, in a total of 373 patients (median age 64 years, 44% women) with myeloid neoplasms (n = 214, 57%), lymphoid neoplasms (n = 124, n = 33%), and other diseases (n = 35, 10%), vaccination was performed with BNT162b2 (BioNTech), mRNA-1273 (Moderna), ChADOx1 (AstraZeneca), or a combination. A total of 229 patients (61%) were on active therapy within 3 months prior vaccination and 144 patients (39%) were previously treated or treatment naïve. Vaccination-related antibody response was negative in 56/373 patients (15%): in 39/124 patients with lymphoid neoplasms, 13/214 with myeloid neoplasms, and 4/35 with other diseases. Active treatment per se was not correlated with negative response. However, rituximab and BTK inhibitor treatment were correlated significantly with a negative vaccination response, whereas younger age and chronic myeloid leukemia (CML) disease were associated with positive response. In addition, 5 of 6 patients with myeloproliferative neoplasm (MPN) and negative vaccination response were on active treatment with ruxolitinib. In conclusion, a remarkable percentage of patients with hematological diseases had no response after 2nd COVID-19 vaccination. Multivariable analysis revealed important factors associated with response to vaccination. The results may serve as a guide for better protection and surveillance in this vulnerable patient cohort.
Journal Article