Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
41 result(s) for "Kleinert, Anne"
Sort by:
Promoting the underestimated: A vignette study on the importance of the need for affiliation to successful leadership
Research on the relationship of implicit motives and effective leadership emphasises the importance of a socialised need for power, whereas high levels of the need for affiliation are assumed to thwart a leader’s success. In our study, we experimentally analysed the impact of leaders’ socialised need for power and their need for affiliation on perceptions of transformational leadership and various success indicators. Using paper-people vignettes, we contrasted leaders characterised by either motive with those concerned with personalised power or achievement. Results based on N = 80 employees show that leaders high in socialised power were rated more successful and elicited more identification and organisational citizenship behaviour (OCB) in followers, and that in most cases this effect was mediated by perceptions of transformational leadership. For all outcomes but OCB, findings remained unchanged when affiliation-motivated leaders were considered. Exploratory analyses contrasting socialised power-motivated and affiliation-motivated leaders show that with regard to attitudinal outcomes affiliation-motivated leaders were, on average, as effective as socialised power-motivated ones.
Versatile Fourier Transform Spectrometer Model for Earth Observation Missions Validated with In-Flight Systems Measurements
What are the main findings? * We developed a unique and flexible Fourier transform spectrometer model that (i) simulates the instrument’s signal and radiometric calibration and reconstructs the measured spectrum; (ii) estimates the radiometric performance; and (iii) predicts the instrument spectral response. * The model has been successfully validated using the in-flight balloon-borne instrument GLORIA-Lite with a maximum deviation between the signal predictions and the measurements lower than 2%. We developed a unique and flexible Fourier transform spectrometer model that (i) simulates the instrument’s signal and radiometric calibration and reconstructs the measured spectrum; (ii) estimates the radiometric performance; and (iii) predicts the instrument spectral response. The model has been successfully validated using the in-flight balloon-borne instrument GLORIA-Lite with a maximum deviation between the signal predictions and the measurements lower than 2%. What are the implication of the main findings? * We have successfully developed and validated an innovative model that accurately predicts the performance of future instruments based on Fourier transform spectrometers. * This model will be used to optimise the design and analyse the performance of upcoming Fourier transform spectrometer-based payloads. We have successfully developed and validated an innovative model that accurately predicts the performance of future instruments based on Fourier transform spectrometers. This model will be used to optimise the design and analyse the performance of upcoming Fourier transform spectrometer-based payloads. Fourier transform spectrometers (FTSs) are cornerstone instruments in Earth observation space missions, effectively monitoring atmospheric gases in missions such as Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), and Infrared Atmospheric Sounding Interferometer (IASI). It will also be the core instrument of Meteosat Third Generation—Sounding (MTG-S) and the future Earth Explorer (EE) mission Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM). Building on this legacy, the European Space Agency (ESA) has developed an FTS instrument and an inverse model designed to estimate the radiometric and spectral performance from a set of instrumental parameters. The model and its validation using in-flight measurements of the FTS instrument Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA)-Lite are described in this paper. The results indicate that the difference between the model predictions and the measured signal is less than 2% relative to the average of the measurements. Moreover, we can correctly predict the instrument’s radiometric gain and offset and reconstruct a scientific science spectrum. This model can be utilised effectively to evaluate the radiometric performance of future FTS missions.
Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) was operated on board the German High Altitude and Long Range Research Aircraft (HALO) during the PGS (POLSTRACC/GW-LCYCLE/SALSA) aircraft campaigns in the Arctic winter 2015/2016. Research flights were conducted from 17 December 2015 until 18 March 2016 within 25–87∘ N, 80∘ W–30∘ E. From the GLORIA infrared limb-emission measurements, two-dimensional cross sections of temperature, HNO3,O3, ClONO2, H2O and CFC-12 are retrieved. During 15 scientific flights of the PGS campaigns the GLORIA instrument measured more than 15 000 atmospheric profiles at high spectral resolution. Dependent on flight altitude and tropospheric cloud cover, the profiles retrieved from the measurements typically range between 5 and 14 km, and vertical resolutions between 400 and 1000 m are achieved. The estimated total (random and systematic) 1σ errors are in the range of 1 to 2 K for temperature and 10 % to 20 % relative error for the discussed trace gases. Comparisons to in situ instruments deployed on board HALO have been performed. Over all flights of this campaign the median differences and median absolute deviations between in situ and GLORIA observations are -0.75K±0.88 K for temperature, -0.03ppbv±0.85 ppbv forHNO3, -3.5ppbv±116.8 ppbv for O3, -15.4pptv±102.8 pptv for ClONO2, -0.13ppmv±0.63 ppmv for H2O and -19.8pptv±46.9 pptv for CFC-12. Seventy-three percent of these differences are within twice the combined estimated errors of the cross-compared instruments. Events with larger deviations are explained by atmospheric variability and different sampling characteristics of the instruments. Additionally, comparisons of GLORIA HNO3 and O3 with measurements of the Aura Microwave Limb Sounder (MLS) instrument show highly consistent structures in trace gas distributions and illustrate the potential of the high-spectral-resolution limb-imaging GLORIA observations for resolving narrow mesoscale structures in the upper troposphere and lower stratosphere (UTLS).
Retrieval of Water Vapour Profiles from GLORIA Nadir Observations
We present the first analysis of water vapour profiles derived from nadir measurements by the infrared imaging Fourier transform spectrometer GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere). The measurements were performed on 27 September 2017, during the WISE (Wave driven ISentropic Exchange) campaign aboard the HALO aircraft over the North Atlantic in an area between 37°–50°N and 20°–28°W. From each nadir recording of the 2-D imaging spectrometer, the spectral radiances of all non-cloudy pixels have been averaged after application of a newly developed cloud filter. From these mid-infrared nadir spectra, vertical profiles of H2O have been retrieved with a vertical resolution corresponding to five degrees of freedom below the aircraft. Uncertainties in radiometric calibration, temperature and spectroscopy have been identified as dominating error sources. Comparing retrievals resulting from two different a priori assumptions (constant exponential vs. ERA 5 reanalysis data) revealed parts of the flight where the observations clearly show inconsistencies with the ERA 5 water vapour fields. Further, a water vapour inversion at around 6 km altitude could be identified in the nadir retrievals and confirmed by a nearby radiosonde ascent. An intercomparison of multiple water vapour profiles from GLORIA in nadir and limb observational modes, IASI (Infrared Atmospheric Sounding Interferometer) satellite data from two different retrieval processors, and radiosonde measurements shows a broad consistency between the profiles. The comparison shows how fine vertical structures are represented by nadir sounders as well as the influence of a priori information on the retrievals.
Biomass burning pollution in the South Atlantic upper troposphere: GLORIA trace gas observations and evaluation of the CAMS model
In this study, we present simultaneous airborne measurements of peroxyacetyl nitrate (PAN), ethane (C2H6), formic acid (HCOOH), methanol (CH3OH), and ethylene (C2H4) above the South Atlantic in September and October 2019. Observations were obtained from the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), as two-dimensional altitude cross sections along the flight path. The flights were part of the SouthTRAC (Transport and Composition in the Southern Hemisphere Upper Troposphere/Lower Stratosphere) campaign with the German High Altitude and Long Range Research Aircraft (HALO). On two flights (8 September 2019 and 7 October 2019), large enhancements of all these substances were found between 7 and 14 km altitude with maximum volume mixing ratios (VMRs) of 1000 pptv for PAN, 1400 pptv for C2H6, 800 pptv for HCOOH, 4500 pptv for CH3OH, and 200 pptv for C2H4. One flight showed a common filamentary structure in the trace gas distributions, while the second flight is characterized by one large plume. Using backward trajectories, we show that measured pollutants likely reached upper troposphere and lower stratosphere (UTLS) altitudes above South America and central Africa, where elevated PAN VMRs are visible at the surface layer of the Copernicus Atmosphere Monitoring Service (CAMS) model during the weeks before both measurements. In comparison to results of the CAMS reanalysis interpolated onto the GLORIA measurement geolocations, we show that the model is able to reproduce the overall structure of the measured pollution trace gas distributions. For PAN, the absolute VMRs are in agreement with the GLORIA measurements. However, C2H6 and HCOOH are generally underestimated by the model, while CH3OH and C2H4, the species with the shortest atmospheric lifetimes of the pollution trace gases discussed, are overestimated by CAMS. The good agreement between model and observations for PAN suggests that the general transport pathways and emissions locations are well captured by the model. The poorer agreement for other species is therefore most likely linked to model deficiencies in the representation of loss processes and emission strength.
Level 1b error budget for MIPAS on ENVISAT
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a Fourier transform spectrometer measuring the radiance emitted from the atmosphere in limb geometry in the thermal infrared spectral region. It was operated onboard the ENVISAT satellite from 2002 to 2012. Calibrated and geolocated spectra, the so-called level 1b data, are the basis for the retrieval of atmospheric parameters. In this paper we present the error budget for the level 1b data of the most recent data version 8 in terms of radiometric, spectral, and line of sight accuracy. The major changes of version 8 compared to older versions are also described. The impact of the different error sources on the spectra is characterized in terms of spectral, vertical, and temporal correlation because these correlations have an impact on the quality of the retrieved quantities. The radiometric error is in the order of 1 % to 2.4 %, the spectral accuracy is better than 0.3 ppm, and the line of sight accuracy at the tangent point is around 400 m. All errors are well within the requirements, and the achieved accuracy allows atmospheric parameters to be retrieved from the measurements with high quality.
Ammonia in the upper troposphere–lower stratosphere (UTLS): GLORIA airborne measurements for CAMS model evaluation in the Asian monsoon and in biomass burning plumes above the South Atlantic
Ammonia (NH3) is the major alkaline species in the atmosphere and plays an important role in aerosol formation, which affects local air quality and the radiation budget. NH3 in the upper troposphere and lower stratosphere (UTLS) is difficult to detect, and only limited observations are available. We present two-dimensional trace gas measurements of NH3 obtained by the airborne infrared imaging limb sounder GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) that was operated on board the research aircraft Geophysica within the Asian monsoon anticyclone during the StratoClim campaign (July 2017) and on board HALO (the High Altitude and LOng Range research aircraft) above the South Atlantic during the SouthTRAC campaign (September–November 2019). We compare these GLORIA measurements in the UTLS with results of the CAMS (Copernicus Atmosphere Monitoring Service) reanalysis and forecast model to evaluate its performance. The GLORIA observations reveal large enhancements of NH3 of more than 1 ppbv in the Asian monsoon upper troposphere but no clear indication of NH3 in biomass burning plumes in the upper troposphere above the South Atlantic above the instrument's detection limit of around 20 pptv. In contrast, CAMS reanalysis and forecast simulation results indicate strong enhancements of NH3 in both measured scenarios. Comparisons of other retrieved pollution gases, such as peroxyacetyl nitrate (PAN), show the ability of CAMS models to generally reproduce the biomass burning plumes above the South Atlantic. However, NH3 concentrations are largely overestimated by the CAMS models within these plumes. We suggest that emission strengths used by CAMS models are of lower accuracy for biomass burning in comparison to agricultural sources in the Asian monsoon. Further, we suggest that loss processes of NH3 during transport to the upper troposphere may be underestimated for the biomass burning cases above the South Atlantic. Since NH3 is strongly undersampled, in particular at higher altitudes, we hope for regular vertically resolved measurements of NH3 from the proposed CAIRT (Changing-Atmosphere Infra-Red Tomography Explorer) mission to strengthen our understanding of this important trace gas in the atmosphere.
Quantification and mitigation of the instrument effects and uncertainties of the airborne limb imaging FTIR GLORIA
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an infrared imaging FTS (Fourier transform spectrometer) with a 2-D infrared detector that is operated on two high-flying research aircraft. It has flown on eight campaigns and measured along more than 300 000 km of flight track. This paper details our instrument calibration and characterization efforts, which, in particular, almost exclusively leverage in-flight data. First, we present the framework of our new calibration scheme, which uses information from all three available calibration sources (two blackbodies and upward-pointing “deep space” measurements). Part of this scheme is a new algorithm for correcting the erratically changing nonlinearity of a subset of detector pixels and the identification of the remaining bad pixels. Using this new calibration, we derive a 1σ bound of 1 % on the instrument gain error and a bound of 30 nW cm−2 sr−1 cm on the instrument offset error. We show how we can examine the noise and spectral accuracy for all measured atmospheric spectra and derive a spectral accuracy of 5 ppm on average. All these errors are compliant with the initial instrument requirements. We also discuss, for the first time, the pointing system of the GLORIA instrument. Combining laboratory calibration efforts with the measurement of astronomical bodies during the flight, we can achieve a pointing accuracy of 0.032∘, which corresponds to one detector pixel. The paper concludes with a brief study of how these newly characterized instrument parameters affect temperature and ozone retrievals. We find that the pointing uncertainty and, to a lesser extent, the instrument gain uncertainty are the main contributors to the error in the result.
Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. Reported characterization data should be intercomparable between different instruments, empirically validatable, grid-independent, usable without detailed knowledge of the instrument or retrieval technique, traceable and still have reasonable data volume. The latter may force one to work with representative rather than individual characterization data. Many errors derive from approximations and simplifications used in real-world retrieval schemes, which are reviewed in this paper, along with related error estimation schemes. The main sources of uncertainty are measurement noise, calibration errors, simplifications and idealizations in the radiative transfer model and retrieval scheme, auxiliary data errors, and uncertainties in atmospheric or instrumental parameters. Some of these errors affect the result in a random way, while others chiefly cause a bias or are of mixed character. Beyond this, it is of utmost importance to know the influence of any constraint and prior information on the solution. While different instruments or retrieval schemes may require different error estimation schemes, we provide a list of recommendations which should help to unify retrieval error reporting.
Pollution trace gases C2H6, C2H2, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations
Measurements of the pollution trace gases ethane (C2H6), ethyne (C2H2), formic acid (HCOOH), and peroxyacetyl nitrate (PAN) were performed in the North Atlantic upper troposphere and lowermost stratosphere (UTLS) region with the airborne limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) with high spatial resolution down to cloud top. Observations were made during flights with the German research aircraft HALO (High Altitude and LOng Range Research Aircraft) in the frame of the WISE (Wave-driven ISentropic Exchange) campaign, which was carried out in autumn 2017 from Shannon (Ireland) and Oberpfaffenhofen (Germany). Enhanced volume mixing ratios (VMRs) of up to 2.2 ppbv C2H6, 0.2 ppbv C2H2, 0.9 ppbv HCOOH, and 0.4 ppbv PAN were detected during the flight on 13 September 2017 in the upper troposphere and around the tropopause above the British Isles. Elevated quantities of PAN were measured even in the lowermost stratosphere (locally up to 14 km), likely reflecting the fact that this molecule has the longest lifetime of the four species discussed herein. Backward trajectory calculations as well as global three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) simulations with artificial tracers of air mass origin have shown that the main sources of the observed pollutant species are forest fires in North America and anthropogenic pollution in South Asia and Southeast Asia uplifted and moved within the Asian monsoon anticyclone (AMA) circulation system. After release from the AMA, these species or their precursor substances are transported by strong tropospheric winds over large distances, depending on their particular atmospheric lifetime of up to months. Observations are compared to simulations with the atmospheric models EMAC (ECHAM5/MESSy Atmospheric Chemistry) and CAMS (Copernicus Atmosphere Monitoring Service). These models are qualitatively able to reproduce the measured VMR enhancements but underestimate the absolute amount of the increase. Increasing the emissions in EMAC by a factor of 2 reduces the disagreement between simulated and measured results and illustrates the importance of the quality of emission databases used in chemical models.