Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
117 result(s) for "Kleyer, Arnd"
Sort by:
IgA subclasses have different effector functions associated with distinct glycosylation profiles
Monomeric serum immunoglobulin A (IgA) can contribute to the development of various autoimmune diseases, but the regulation of serum IgA effector functions is not well defined. Here, we show that the two IgA subclasses (IgA1 and IgA2) differ in their effect on immune cells due to distinct binding and signaling properties. Whereas IgA2 acts pro-inflammatory on neutrophils and macrophages, IgA1 does not have pronounced effects. Moreover, IgA1 and IgA2 have different glycosylation profiles, with IgA1 possessing more sialic acid than IgA2. Removal of sialic acid increases the pro-inflammatory capacity of IgA1, making it comparable to IgA2. Of note, disease-specific autoantibodies in patients with rheumatoid arthritis display a shift toward the pro-inflammatory IgA2 subclass, which is associated with higher disease activity. Taken together, these data demonstrate that IgA effector functions depend on subclass and glycosylation, and that disturbances in subclass balance are associated with autoimmune disease. Immunoglobulin A (IgA) has two subclasses, IgA1 and IgA2, but differential effects on inflammation are unclear. Here the authors show that IgA2, when compared with IgA1, has stronger pro-inflammatory functions associated with changed glycosylation and higher disease scores in patients with rheumatoid arthritis.
Locally renewing resident synovial macrophages provide a protective barrier for the joint
Macrophages are considered to contribute to chronic inflammatory diseases such as rheumatoid arthritis 1 . However, both the exact origin and the role of macrophages in inflammatory joint disease remain unclear. Here we use fate-mapping approaches in conjunction with three-dimensional light-sheet fluorescence microscopy and single-cell RNA sequencing to perform a comprehensive spatiotemporal analysis of the composition, origin and differentiation of subsets of macrophages within healthy and inflamed joints, and study the roles of these macrophages during arthritis. We find that dynamic membrane-like structures, consisting of a distinct population of CX 3 CR1 + tissue-resident macrophages, form an internal immunological barrier at the synovial lining and physically seclude the joint. These barrier-forming macrophages display features that are otherwise typical of epithelial cells, and maintain their numbers through a pool of locally proliferating CX 3 CR1 − mononuclear cells that are embedded into the synovial tissue. Unlike recruited monocyte-derived macrophages, which actively contribute to joint inflammation, these epithelial-like CX 3 CR1 + lining macrophages restrict the inflammatory reaction by providing a tight-junction-mediated shield for intra-articular structures. Our data reveal an unexpected functional diversification among synovial macrophages and have important implications for the general role of macrophages in health and disease. Analysis of macrophage subsets within joints reveals a population of CX 3 CR1 + tissue-resident macrophages that form a tight-junction-mediated barrier at the synovial lining, protecting the joint from the invasion of inflammatory cells.
Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis
Gut microbial dysbiosis is associated with the development of autoimmune disease, but the mechanisms by which microbial dysbiosis affects the transition from asymptomatic autoimmunity to inflammatory disease are incompletely characterized. Here, we identify intestinal barrier integrity as an important checkpoint in translating autoimmunity to inflammation. Zonulin family peptide (zonulin), a potent regulator for intestinal tight junctions, is highly expressed in autoimmune mice and humans and can be used to predict transition from autoimmunity to inflammatory arthritis. Increased serum zonulin levels are accompanied by a leaky intestinal barrier, dysbiosis and inflammation. Restoration of the intestinal barrier in the pre-phase of arthritis using butyrate or a cannabinoid type 1 receptor agonist inhibits the development of arthritis. Moreover, treatment with the zonulin antagonist larazotide acetate, which specifically increases intestinal barrier integrity, effectively reduces arthritis onset. These data identify a preventive approach for the onset of autoimmune disease by specifically targeting impaired intestinal barrier function. Intestinal dysbiosis is associated with an ever-growing list of autoimmune diseases. Here the authors show that both mice and humans with autoimmune arthritis can have dysbiosis and barrier leakiness prior to major signs of inflammatory arthritis, and treatment of mice with a zonulin antagonist can limit collagen-induced arthritis.
Th2 and eosinophil responses suppress inflammatory arthritis
Th2–eosinophil immune responses are well known for mediating host defence against helminths. Herein we describe a function of Th2–eosinophil responses in counteracting the development of arthritis. In two independent models of arthritis, Nippostrongylus brasiliensis infection leads to Th2 and eosinophil accumulation in the joints associated with robust inhibition of arthritis and protection from bone loss. Mechanistically, this protective effect is dependent on IL-4/IL-13-induced STAT6 pathway. Furthermore, we show that eosinophils play a central role in the modulation of arthritis probably through the increase of anti-inflammatory macrophages into arthritic joints. The presence of these pathways in human disease is confirmed by detection of GATA3-positive cells and eosinophils in the joints of rheumatoid arthritis patients. Taken together, these results demonstrate that eosinophils and helminth-induced activation of the Th2 pathway axis effectively mitigate the course of inflammatory arthritis. Type 2 immune responses are viewed as opposites of Type 1 and 17 responses. Here the authors show that activation of Type 2 immunity by helminth infection counteracts the development of inflammatory arthritis, a type 17-mediated pathology, via IL-4/IL-13- STAT6 signalling and eosinophil activation.
Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease
Krönke and colleagues show that the cytokine IL-23 controls the glycosylation profile and inflammatory activity of autoantibodies through control of sialyltransferase activity in plasma cells mediated by the T H 17 subset of helper T cells. The checkpoints and mechanisms that contribute to autoantibody-driven disease are as yet incompletely understood. Here we identified the axis of interleukin 23 (IL-23) and the T H 17 subset of helper T cells as a decisive factor that controlled the intrinsic inflammatory activity of autoantibodies and triggered the clinical onset of autoimmune arthritis. By instructing B cells in an IL-22- and IL-21-dependent manner, T H 17 cells regulated the expression of β-galactoside α2,6-sialyltransferase 1 in newly differentiating antibody-producing cells and determined the glycosylation profile and activity of immunoglobulin G (IgG) produced by the plasma cells that subsequently emerged. Asymptomatic humans with rheumatoid arthritis (RA)-specific autoantibodies showed identical changes in the activity and glycosylation of autoreactive IgG antibodies before shifting to the inflammatory phase of RA; thus, our results identify an IL-23–T H 17 cell–dependent pathway that controls autoantibody activity and unmasks a preexisting breach in immunotolerance.
Disease interception with interleukin-17 inhibition in high-risk psoriasis patients with subclinical joint inflammation—data from the prospective IVEPSA study
Background A specific subset of psoriasis patients is characterized by subclinical inflammatory changes. These patients frequently present with arthralgia and have a higher risk to develop psoriatic arthritis (PsA). We hypothesized that IL-17A inhibition in this subset of patients can intercept the link between skin and joint disease and resolves pain and inflammatory changes. Methods Psoriasis, but no PsA, patients were included in the open prospective exploratory Interception in very early PsA (IVEPSA) study. Patients had to have nail or scalp involvement or a high psoriasis area severity index (PASI) (> 6) as well as inflammatory or erosive changes in MRI or CT. Patients received treatment with the anti-interleukin (IL)-17A antibody secukinumab over 24 weeks. Clinical assessments of skin and joint disease were done at baseline and after 12 and 24 weeks, MRI and CT at baseline and after 24 weeks. Results Twenty patients were included, 85% of them reporting arthralgia and 40% had tender joints at the examination. Eighty-three percent had at least one inflammatory lesion in the MRI, most of them synovitis/enthesitis. Skin disease (PASI: p  < 0.002; BSA: p  < 0.003) and arthralgia (VAS pain: p  < 0.003) significantly improved after 24 weeks. Total PsAMRIS ( p  = 0.005) and synovitis subscore ( p  = 0.008) also significantly improved. Erosions and enthesiophytes did not progress, while bone mass in the distal radius significantly ( p  = 0.020) increased after 24 weeks. Conclusions These data suggest that very early disease interception in PsA is possible leading to a comprehensive decline in skin symptoms, pain, and subclinical inflammation. IVEPSA therefore provides rationale for future early interventions with the concept to prevent the onset of PsA in high-risk individuals. Trial registration Trial registry name PSARTROS; trial registry number: NCT02483234 ; June 26, 2015.
Deep learning methods allow fully automated segmentation of metacarpal bones to quantify volumetric bone mineral density
Arthritis patients develop hand bone loss, which leads to destruction and functional impairment of the affected joints. High resolution peripheral quantitative computed tomography (HR-pQCT) allows the quantification of volumetric bone mineral density (vBMD) and bone microstructure in vivo with an isotropic voxel size of 82 micrometres. However, image-processing to obtain bone characteristics is a time-consuming process as it requires semi-automatic segmentation of the bone. In this work, a fully automatic vBMD measurement pipeline for the metacarpal (MC) bone using deep learning methods is introduced. Based on a dataset of HR-pQCT volumes with MC measurements for 541 patients with arthritis, a segmentation network is trained. The best network achieves an intersection over union as high as 0.94 and a Dice similarity coefficient of 0.97 while taking only 33 s to process a whole patient yielding a speedup between 2.5 and 4.0 for the whole workflow. Strong correlation between the vBMD measurements of the expert and of the automatic pipeline are achieved for the average bone density with 0.999 (Pearson) and 0.996 (Spearman’s rank) with p < 0.001 for all correlations. A qualitative assessment of the network predictions and the manual annotations yields a 65.9% probability that the expert favors the network predictions. Further, the steps to integrate the pipeline into the clinical workflow are shown. In order to make these workflow improvements available to others, we openly share the code of this work.
Accuracy and tolerability of self-sampling of capillary blood for analysis of inflammation and autoantibodies in rheumatoid arthritis patients—results from a randomized controlled trial
Background Rheumatoid arthritis (RA) requires early diagnosis and tight surveillance of disease activity. Remote self-collection of blood for the analysis of inflammation markers and autoantibodies could improve the monitoring of RA and facilitate the identification of individuals at-risk for RA. Objective Randomized, controlled trial to evaluate the accuracy, feasibility, and acceptability of an upper arm self-sampling device (UA) and finger prick-test (FP) to measure capillary blood from RA patients for C-reactive protein (CRP) levels and the presence of IgM rheumatoid factor (RF IgM) and anti-cyclic citrullinated protein antibodies (anti-CCP IgG). Methods RA patients were randomly assigned in a 1:1 ratio to self-collection of capillary blood via UA or FP. Venous blood sampling (VBS) was performed as a gold standard in both groups to assess the concordance of CRP levels as well as RF IgM and CCP IgG. General acceptability and pain during sampling were measured and compared between UA, FP, and VBS. The number of attempts for successful sampling, requests for assistance, volume, and duration of sample collection were also assessed. Results Fifty seropositive RA patients were included. 49/50 (98%) patients were able to successfully collect capillary blood. The overall agreement between capillary and venous analyses for CRP (0.992), CCP IgG (0.984), and RF IgM (0.994) were good. In both groups, 4/25 (16%) needed a second attempt and 8/25 (32%) in the UA and 7/25 (28%) in the FP group requested assistance. Mean pain scores for capillary self-sampling (1.7/10 ± 1.1 (UA) and 1.9/10 ± 1.9 (FP)) were significantly lower on a numeric rating scale compared to venous blood collection (UA: 2.8/10 ± 1.7; FP: 2.1 ± 2.0) ( p =0.003). UA patients were more likely to promote the use of capillary blood sampling (net promoter score: +28% vs. −20% for FP) and were more willing to perform blood collection at home (60% vs. 32% for FP). Conclusions These data show that self-sampling is accurate and feasible within one attempt by the majority of patients without assistance, allowing tight monitoring of RA disease activity as well as identifying individuals at-risk for RA. RA patients seem to prefer upper arm-based self-sampling to traditional finger pricking. Trial registration DRKS.de Identifier: DRKS00023526 . Registered on November 6, 2020.
Regulatory eosinophils induce the resolution of experimental arthritis and appear in remission state of human rheumatoid arthritis
ObjectivesEosinophils possess pro-inflammatory functions in asthma. However, our recent studies have suggested that innate lymphoid cells type 2 (ILC2s) and eosinophils have proresolving properties in rheumatoid arthritis (RA). Nothing is known yet about the mechanisms determining the double-edged role of eosinophils. Therefore, we investigated whether asthma, a paradigm eosinophilic disease, can elicit resolution of chronic arthritis.MethodsOvalbumin-triggered eosinophilic asthma was combined with K/BxN serum-induced arthritis, where lung and synovial eosinophil subsets were compared by single-cell RNA sequencing (scRNA-seq). To investigate the involvement of the ILC2–interleukin-5 (IL-5) axis, hydrodynamic injection (HDI) of IL-25 and IL-33 plasmids, IL-5 reporter mice and anti-IL-5 antibody treatment were used. In patients with RA, the presence of distinct eosinophil subsets was examined in peripheral blood and synovial tissue. Disease activity of patients with RA with concomitant asthma was monitored before and after mepolizumab (anti-IL-5 antibody) therapy.ResultsThe induction of eosinophilic asthma caused resolution of murine arthritis and joint tissue protection. ScRNA-seq revealed a specific subset of regulatory eosinophils (rEos) in the joints, distinct from inflammatory eosinophils in the lungs. Mechanistically, synovial rEos expanded on systemic upregulation of IL-5 released by lung ILC2s. Eosinophil depletion abolished the beneficial effect of asthma on arthritis. rEos were consistently present in the synovium of patients with RA in remission, but not in active stage. Remarkably, in patients with RA with concomitant asthma, mepolizumab treatment induced relapse of arthritis.ConclusionThese findings point to a hitherto undiscovered proresolving signature in an eosinophil subset that stimulates arthritis resolution.
Mobile Health Usage, Preferences, Barriers, and eHealth Literacy in Rheumatology: Patient Survey Study
Mobile health (mHealth) defines the support and practice of health care using mobile devices and promises to improve the current treatment situation of patients with chronic diseases. Little is known about mHealth usage and digital preferences of patients with chronic rheumatic diseases. The aim of the study was to explore mHealth usage, preferences, barriers, and eHealth literacy reported by German patients with rheumatic diseases. Between December 2018 and January 2019, patients (recruited consecutively) with rheumatoid arthritis, psoriatic arthritis, and axial spondyloarthritis were asked to complete a paper-based survey. The survey included questions on sociodemographics, health characteristics, mHealth usage, eHealth literacy using eHealth Literacy Scale (eHEALS), and communication and information preferences. Of the patients (N=193) who completed the survey, 176 patients (91.2%) regularly used a smartphone, and 89 patients (46.1%) regularly used social media. Patients (132/193, 68.4%) believed that using medical apps could be beneficial for their own health. Out of 193 patients, only 8 (4.1%) were currently using medical apps, and only 22 patients (11.4%) stated that they knew useful rheumatology websites/mobile apps. Nearly all patients (188/193, 97.4%) would agree to share their mobile app data for research purposes. Out of 193 patients, 129 (66.8%) would regularly enter data using an app, and 146 patients (75.6%) would welcome official mobile app recommendations from the national rheumatology society. The preferred duration for data entry was not more than 15 minutes (110/193, 57.0%), and the preferred frequency was weekly (59/193, 30.6%). Medication information was the most desired app feature (150/193, 77.7%). Internet was the most frequently utilized source of information (144/193, 74.6%). The mean eHealth literacy was low (26.3/40) and was positively correlated with younger age, app use, belief in benefit of using medical apps, and current internet use to obtain health information. Patients with rheumatic diseases are very eager to use mHealth technologies to better understand their chronic diseases. This open-mindedness is counterbalanced by low mHealth usage and competency. Personalized mHealth solutions and clear implementation recommendations are needed to realize the full potential of mHealth in rheumatology.