Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
50 result(s) for "Klopocki, Eva"
Sort by:
Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog)
Stefan Mundlos, Darío Lupiáñez and colleagues investigate CNVs involving the regulatory landscape of IHH (Indian hedgehog), which cause craniosynostosis and synpolydactyly. Using genetic manipulation in mice, they show that Ihh is regulated by at least nine enhancers with individual tissue specificities and that duplications in this region can cause dose-dependent upregulation and also misexpression of Ihh . Copy number variations (CNVs) often include noncoding sequences and putative enhancers, but how these rearrangements induce disease is poorly understood. Here we investigate CNVs involving the regulatory landscape of IHH (encoding Indian hedgehog), which cause multiple, highly localized phenotypes including craniosynostosis and synpolydactyly 1 , 2 . We show through transgenic reporter and genome-editing studies in mice that Ihh is regulated by a constellation of at least nine enhancers with individual tissue specificities in the digit anlagen, growth plates, skull sutures and fingertips. Consecutive deletions, resulting in growth defects of the skull and long bones, showed that these enhancers function in an additive manner. Duplications, in contrast, caused not only dose-dependent upregulation but also misexpression of Ihh , leading to abnormal phalanges, fusion of sutures and syndactyly. Thus, precise spatiotemporal control of developmental gene expression is achieved by complex multipartite enhancer ensembles. Alterations in the composition of such clusters can result in gene misexpression and disease.
Tissue-Nonspecific Alkaline Phosphatase—A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme’s role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.
Investigation of alpl expression and Tnap-activity in zebrafish implies conserved functions during skeletal and neuronal development
Hypophosphatasia (HPP) is a rare genetic disease with diverse symptoms and a heterogeneous severity of onset with underlying mutations in the ALPL gene encoding the ectoenzyme Tissue-nonspecific alkaline phosphatase (TNAP). Considering the establishment of zebrafish ( Danio rerio ) as a new model organism for HPP, the aim of the study was the spatial and temporal analysis of alpl expression in embryos and adult brains. Additionally, we determined functional consequences of Tnap inhibition on neural and skeletal development in zebrafish. We show that expression of alpl is present during embryonic stages and in adult neuronal tissues. Analyses of enzyme function reveal zones of pronounced Tnap-activity within the telencephalon and the mesencephalon. Treatment of zebrafish embryos with chemical Tnap inhibitors followed by axonal and cartilage/mineralized tissue staining imply functional consequences of Tnap deficiency on neuronal and skeletal development. Based on the results from neuronal and skeletal tissue analyses, which demonstrate an evolutionary conserved role of this enzyme, we consider zebrafish as a promising species for modeling HPP in order to discover new potential therapy strategies in the long-term.
Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients
Background A limitation of positive selection strategies to enrich for circulating tumor cells (CTCs) is that there might be CTCs with insufficient expression of the surface target marker which may be missed by the procedure. We optimized a method for enrichment, subsequent detection and characterization of CTCs based on depletion of the leukocyte fraction. Methods The 2-step protocol was developed for processing 20 mL blood and based on red blood cell lysis followed by leukocyte depletion. The remaining material was stained with the epithelial markers EpCAM and cytokeratin (CK) 7/8 or for the melanoma marker HMW-MAA/MCSP. CTCs were detected by flow cytometry. CTCs enriched from blood of patients with carcinoma were defined as EpCAM+CK+CD45-. CTCs enriched from blood of patients with melanoma were defined as MCSP+CD45-. One-hundred-sixteen consecutive blood samples from 70 patients with metastatic carcinomas (n = 48) or metastatic melanoma (n = 22) were analyzed. Results CTCs were detected in 47 of 84 blood samples (56%) drawn from carcinoma patients, and in 17 of 32 samples (53%) from melanoma patients. CD45-EpCAM-CK+ was detected in pleural effusion specimens, as well as in peripheral blood samples of patients with NSCLC. EpCAM-CK+ cells have been successfully cultured and passaged longer than six months suggesting their neoplastic origin. This was confirmed by CGH. By defining CTCs in carcinoma patients as CD45-CK+ and/or EpCAM+, the detection rate increased to 73% (61/84). Conclusion Enriching CTCs using CD45 depletion allowed for detection of epithelial cancer cells not displaying the classical phenotype. This potentially leads to a more accurate estimation of the number of CTCs. If detection of CTCs without a classical epithelial phenotype has clinical relevance need to be determined.
On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio)
The transcription factor 12 (tcf12) is a basic Helix-Loop-Helix protein (bHLH) of the E-protein family, proven to play an important role in developmental processes like neurogenesis, mesoderm formation, and cranial vault development. In humans, mutations in TCF12 lead to craniosynostosis, a congenital birth disorder characterized by the premature fusion of one or several of the cranial sutures. Current research has been primarily focused on functional studies of TCF12, hence the cellular expression profile of this gene during embryonic development and early stages of ossification remains poorly understood. Here we present the establishment and detailed analysis of two transgenic tcf12:EGFP fluorescent zebrafish (Danio rerio) reporter lines. Using these transgenic lines, we analyzed the general spatiotemporal expression pattern of tcf12 during different developmental stages and put emphasis on skeletal development and cranial suture patterning. We identified robust tcf12 promoter-driven EGFP expression in the central nervous system (CNS), the heart, the pronephros, and the somites of zebrafish embryos. Additionally, expression was observed inside the muscles and bones of the viscerocranium in juvenile and adult fish. During cranial vault development, the transgenic fish show a high amount of tcf12 expressing cells at the growth fronts of the ossifying frontal and parietal bones and inside the emerging cranial sutures. Subsequently, we tested the transcriptional activity of three evolutionary conserved non-coding elements (CNEs) located in the tcf12 locus by transient transgenic assays and compared their in vivo activity to the expression pattern determined in the transgenic tcf12:EGFP lines. We could validate two of them as tcf12 enhancer elements driving specific gene expression in the CNS during embryogenesis. Our newly established transgenic lines enhance the understanding of tcf12 gene regulation and open up the possibilities for further functional investigation of these novel tcf12 enhancer elements in zebrafish.
Functional analyses of splice site variants in TCF12
Pre-mRNA splicing is a fundamental step in protein synthesis within a cell. Malfunctions during this process can lead to dysfunctional proteins and thus, to a variety of different human diseases. Mis-splicing can be caused by genetic variants influencing many different molecular processes, e.g. splice donor and splice acceptor site variants. Today, the consequences of these variants can be calculated via different in-silico programs. Due to the complexity of the splicing process, however, these predictions are not always correct and should not be used as stand-alone criteria for the classification of potentially disease-causing variants. Therefore, in case RNA from an appropriate tissue is not available additional in-vitro studies, such as a minigene splice assay, which allows functional analyses of potentially disease-causing variants, are necessary to demonstrate an effect on splicing. One example of a human developmental disorder occasionally caused by mis-splicing of transcripts is craniosynostosis. This congenital disorder is defined by the premature fusion of one or multiple cranial sutures in the neurocranium. To date, numerous mutation types in more than 50 genes which are involved in a broad range of different cellular functions and pathways have been associated with craniosynostosis. For instance, the TCF12 gene encoding the bHLH (basic helix-loop-helix) protein TCF12 (transcription factor 12) is linked to Craniosynostosis 3 (OMIM: 615314) which exhibits a Saethre-Chotzen (OMIM:101400) like phenotype. In this study, we report a pipeline for functional validation of potential splice site altering variants. First, we describe the identification of two novel genetic variants and revalidation of one previously described genetic variant in patients with craniosynostosis. According to in-silico predictions, the splicing of the corresponding transcripts is altered, and the variants are potentially disease causing. We subsequently classify the consequences of alterations in TCF12 experimentally. The suspected aberrant splicing was investigated via an in-vitro minigene splice assay. In two out of three variants, the in-silico prediction and in-vitro experiments were consistent. In all variants a significantly reduced transcriptional activity was demonstrated. In summary, the combination of in-silico prediction and functional assays allowed us to classify the variants as likely pathogenic without the need for additional patient material.
Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome
Background/Objectives Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. Results The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix–Loop–Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta ( T/brachyury/ntl ). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. Conclusion In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.
Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer
Many molecular alterations are known to occur in urothelial carcinoma of the bladder, but their significance for tumor progression is poorly understood. Deletions of chromosome 8p are frequently found in several tumor types and are often associated with progressive disease. In all, 99 bladder tumors were screened for deletions at 8p using loss of heterozygosity (LOH) and multicolor fluorescence in situ hybridization FISH analyses. Allelic loss on chromosome 8p in at least one marker was found in 25/99 (25%) tumors. There was a significant correlation of 8p deletions with invasive tumor growth and a highly significant association with papillary growth pattern in patients with invasive disease. cDNA array analyses revealed that secreted Frizzled-related protein 1 (sFRP1), an antagonist of Frizzled receptors and Wnt pathway activation on chromosome 8p12–11.1, is frequently downregulated in bladder cancer. To investigate sFRP1 as a candidate for a putative progression-related gene on 8p, urothelial cell lines and primary urothelial carcinomas were screened for sFRP1 expression using quantitative real-time PCR, Northern blot, immunofluorescence and immunohistochemistry (IHC). Of the investigated bladder cancers, 38% showed loss of sFRP1 expression by quantitative RT-PCR. Evaluation of the protein expression by IHC using tissue microarrays containing 776 bladder cancers revealed loss or strong reduction of sFRP1 expression in 66% of cases. SFRP1 loss was associated with higher tumor stage and grade and shorter overall survival. In addition, loss of sFRP1 was an independent indicator of poor survival in patients with papillary but not with muscle invasive bladder cancer. There were neither mutations in the coding region of sFRP1 nor homozygous deletions at 8p12–11.21. However, promoter methylation was detected using methylation-specific PCR in 29% of cases. In conclusion, we could show a close correlation of chromosome 8p deletions and progression of papillary bladder tumors. The sFRP1 gene on chromosome 8p12–11.1 could be a candidate gene for the predicted, progression-related tumor suppressor gene in bladder cancer and could contribute to urothelial carcinogenesis.
Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish
Numerous disease syndromes are associated with regions of copy number variation (CNV) in the human genome and, in most cases, the pathogenicity of the CNV is thought to be related to altered dosage of the genes contained within the affected segment. However, establishing the contribution of individual genes to the overall pathogenicity of CNV syndromes is difficult and often relies on the identification of potential candidates through manual searches of the literature and online resources. We describe here the development of a computational framework to comprehensively search phenotypic information from model organisms and single-gene human hereditary disorders, and thus speed the interpretation of the complex phenotypes of CNV disorders. There are currently more than 5000 human genes about which nothing is known phenotypically but for which detailed phenotypic information for the mouse and/or zebrafish orthologs is available. Here, we present an ontology-based approach to identify similarities between human disease manifestations and the mutational phenotypes in characterized model organism genes; this approach can therefore be used even in cases where there is little or no information about the function of the human genes. We applied this algorithm to detect candidate genes for 27 recurrent CNV disorders and identified 802 gene-phenotype associations, approximately half of which involved genes that were previously reported to be associated with the individual phenotypic features and half of which were novel candidates. A total of 431 associations were made solely on the basis of model organism phenotype data. Additionally, we observed a striking, statistically significant tendency for individual disease phenotypes to be associated with multiple genes located within a single CNV region, a phenomenon that we denote as pheno-clustering. Many of the clusters also display statistically significant similarities in protein function or vicinity within the protein-protein interaction network. Our results provide a basis for understanding previously un-interpretable genotype-phenotype correlations in pathogenic CNVs and for mobilizing the large amount of model organism phenotype data to provide insights into human genetic disorders.