Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Knudsen, Mads Faurschou"
Sort by:
Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years
Understanding the internal ocean variability and its influence on climate is imperative for society. A key aspect concerns the enigmatic Atlantic Multidecadal Oscillation (AMO), a feature defined by a 60- to 90-year variability in North Atlantic sea-surface temperatures. The nature and origin of the AMO is uncertain, and it remains unknown whether it represents a persistent periodic driver in the climate system, or merely a transient feature. Here, we show that distinct, ∼55- to 70-year oscillations characterized the North Atlantic ocean-atmosphere variability over the past 8,000 years. We test and reject the hypothesis that this climate oscillation was directly forced by periodic changes in solar activity. We therefore conjecture that a quasi-persistent ∼55- to 70-year AMO, linked to internal ocean-atmosphere variability, existed during large parts of the Holocene. Our analyses further suggest that the coupling from the AMO to regional climate conditions was modulated by orbitally induced shifts in large-scale ocean-atmosphere circulation.
Observational evidence for enhanced magnetic activity of superflare stars
Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.
One million years of glaciation and denudation history in west Greenland
The influence of major Quaternary climatic changes on growth and decay of the Greenland Ice Sheet, and associated erosional impact on the landscapes, is virtually unknown beyond the last deglaciation. Here we quantify exposure and denudation histories in west Greenland by applying a novel Markov-Chain Monte Carlo modelling approach to all available paired cosmogenic Be- Al bedrock data from Greenland. We find that long-term denudation rates in west Greenland range from >50 m Myr in low-lying areas to ∼2 m Myr at high elevations, hereby quantifying systematic variations in denudation rate among different glacial landforms caused by variations in ice thickness across the landscape. We furthermore show that the present day ice-free areas only were ice covered ca. 45% of the past 1 million years, and even less at high-elevation sites, implying that the Greenland Ice Sheet for much of the time was of similar size or even smaller than today.
Exceptional 20th century glaciological regime of a major SE Greenland outlet glacier
The early 2000s accelerated ice-mass loss from large outlet glaciers in W and SE Greenland has been linked to warming of the subpolar North Atlantic. To investigate the uniqueness of this event, we extend the record of glacier and ocean changes back 1700 years by analyzing a sediment core from Sermilik Fjord near Helheim Glacier in SE Greenland. We show that multidecadal to centennial increases in alkenone-inferred Atlantic Water SSTs on the shelf occurred at times of reduced solar activity during the Little Ice Age, when the subpolar gyre weakened and shifted westward promoted by atmospheric blocking events. Helheim Glacier responded to many of these episodes with increased calving, but despite earlier multidecadal warming episodes matching the 20th century high SSTs in magnitude, the glacier behaved differently during the 20th century. We suggest the presence of a floating ice tongue since at least 300 AD lasting until 1900 AD followed by elevated 20th century glacier calving due to the loss of the tongue. We attribute this regime shift to 20th century unprecedented low sea-ice occurrence in the East Greenland Current and conclude that properties of this current are important for the stability of the present ice tongues in NE Greenland.
Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age
The Atlantic Multidecadal Oscillation (AMO) represents a significant driver of Northern Hemisphere climate, but the forcing mechanisms pacing the AMO remain poorly understood. Here we use the available proxy records to investigate the influence of solar and volcanic forcing on the AMO over the last ~450 years. The evidence suggests that external forcing played a dominant role in pacing the AMO after termination of the Little Ice Age (LIA; ca. 1400-1800), with an instantaneous impact on mid-latitude sea-surface temperatures that spread across the North Atlantic over the ensuing ~5 years. In contrast, the role of external forcing was more ambiguous during the LIA. Our study further suggests that the Atlantic Meridional Overturning Circulation is important for linking external forcing with North Atlantic sea-surface temperatures, a conjecture that reconciles two opposing theories concerning the origin of the AMO.
Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be
We have studied solar variations during the Holocene (i.e., last ∼11,700 yr) by combining a new model of the Earth's dipole moment with 14C data from the IntCal04 record and 10Be data from the GRIP ice core. Joint spectral analysis of the two nuclide records suggests that the periodic behavior of the Sun was particularly pronounced between 6000–4500 yr BP and 3000–2000 yr BP, with dominating periodicities of ∼88, ∼150, ∼220, and ∼400 years, while this rhythmic behavior faded during other time intervals. The fact that the two reconstructions, based on radionuclides with distinct geochemical properties, agree with respect to both the frequency and timing of the periodic behavior, strongly suggests that they reflect the actual behavior of the Sun. Subtle but systematic differences between the amplitude spectra may point to an interplay between the climate system and the ∼220‐ and ∼400‐year solar cycles during intervals when these were particularly prominent.
Taking the pulse of the Sun during the Holocene by joint analysis of C-14 and Be-10
We have studied solar variations during the Holocene (i.e., last similar to 11,700 yr) by combining a new model of the Earth's dipole moment with C-14 data from the IntCal04 record and 10 Be data from the GRIP ice core. Joint spectral analysis of the two nuclide records suggests that the periodic behavior of the Sun was particularly pronounced between 6000-4500 yr BP and 3000-2000 yr BP, with dominating periodicities of similar to 88, similar to 150, similar to 220, and similar to 400 years, while this rhythmic behavior faded during other time intervals. The fact that the two reconstructions, based on radionuclides with distinct geochemical properties, agree with respect to both the frequency and timing of the periodic behavior, strongly suggests that they reflect the actual behavior of the Sun. Subtle but systematic differences between the amplitude spectra may point to an interplay between the climate system and the similar to 220- and similar to 400-year solar cycles during intervals when these were particularly prominent. Citation: Knudsen, M. F., P. Riisager, B. H. Jacobsen, R. Muscheler, I. Snowball, and M.-S. Seidenkrantz (2009), Taking the pulse of the Sun during the Holocene by joint analysis of 14 C and 10 Be, Geophys. Res. Lett., 36, L16701, doi: 10.1029/2009GL039439.
Glacial–interglacial cycles in the south-central and southeastern Pyrenees since ~180 ka (NE Spain–Andorra–S France)
This study uses luminescence and 14C accelerator mass spectrometry procedures to date relevant glaciofluvial and glacial deposits from the south-central and southeastern Pyrenees (Andorra–France–Spain). We distinguish two types of end-moraine complexes: (1) those in which at least a far-flung moraine exists beyond a frequently nested end-moraine complex (the most common) and (2) those in which a close-nested end moraine encompasses at least two glacial cycles. Both types formed within six distinctive glacial intervals: (1) A penultimate glacial cycle during Marine Oxygen Isotope Stage (MIS) 6 and older glaciofluvial terraces occurred beyond the range of the luminescence dating method. (2) An early glacial advance in MIS 5d (~97 −15/+19 ka) was followed by glacial retreat during MIS 5c (< 91 ± 9 ka). (3) The last maximum ice extent (LMIE) was in early MIS 4 (~74 ± 4.5 ka). (4) Unexpectedly, glaciers thinned during the second half of MIS 3 (~39 −6/+11 ka). (5) During the MIS 3–2 transition, glaciers subsequently fluctuated behind the LMIE limits. (6) The global last glacial maximum (LGM) started as early as ~26.6 ± 0.365 ka b2k, and the corresponding end moraines were built behind the LMIE limits or merged with it, forming close-nested moraines.
Ice-buttressing-controlled rock slope failure on a cirque headwall, Lake District, UK
Rock slope failures in the Lake District, UK, have been associated with deglacial processes after the Last Glacial Maximum, but the controls and timing of the failures remain poorly known. A cirque headwall failure was investigated to determine failure mechanisms and timing. The translated wedge of rock is thin and lies on a steep failure plane, yet the friable strata were not disrupted by downslope movement. Fault lines and a failure surface, defining the wedge, were used as input to a numerical model of rock wedge stability. Various failure scenarios indicated that the slope was unstable and would have failed catastrophically if not supported by glacial ice in the base of the cirque. The amount of ice required to buttress the slope is insubstantial, indicating likely failure during the thinning of the cirque glacier. We propose that, as the ice thinned, the wedge was lowered slowly down the cirque headwall, gradually exposing the failure plane. A cosmogenic 10Be surface exposure age of 18.0±1.2 ka from the outer surface of the wedge indicates Late Devensian de-icing of the backwall of the cirque, with a second exposure age from the upper portion of the failure plane yielding 12.0±0.8 ka. The 18.0±1.2 ka date is consistent with a small buttressing ice mass being present in the cirque at the time of regional deglaciation. The exposure age of 12.0±0.8 ka represents a minimum age, as the highly fractured surface of the failure plane has experienced post-failure mass-wasting. Considering the chronology, it appears unlikely that the cirque was reoccupied by a substantial ice mass during the Younger Dryas stadial.