Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Ko, Eun Ae"
Sort by:
Downregulation of the RNA-binding protein PUM2 facilitates MSC-driven bone regeneration and prevents OVX-induced bone loss
by
Yoon, Dong Suk
,
Lee, Kyoung-Mi
,
Ko, Eun Ae
in
3' Untranslated regions
,
Alizarin
,
Alkaline phosphatase
2023
Background
Although mRNA dysregulation can induce changes in mesenchymal stem cell (MSC) homeostasis, the mechanisms by which post-transcriptional regulation influences MSC differentiation potential remain understudied. PUMILIO2 (PUM2) represses translation by binding target mRNAs in a sequence-specific manner.
Methods
In vitro osteogenic differentiation assays were conducted using human bone marrow-derived MSCs. Alkaline phosphatase and alizarin red S staining were used to evaluate the osteogenic potential of MSCs. A rat xenograft model featuring a calvarial defect to examine effects of MSC-driven bone regeneration. RNA-immunoprecipitation (RNA-IP) assay was used to determine the interaction between PUM2 protein and
Distal-Less Homeobox 5
(
DLX5
) mRNA. Ovariectomized (OVX) mice were employed to evaluate the effect of gene therapy for postmenopausal osteoporosis.
Results
Here, we elucidated the molecular mechanism of PUM2 in MSC osteogenesis and evaluated the applicability of PUM2 knockdown (KD) as a potential cell-based or gene therapy. PUM2 level was downregulated during MSC osteogenic differentiation, and PUM2 KD enhanced MSC osteogenic potential. Following PUM2 KD, MSCs were transplanted onto calvarial defects in 12-week-old rats; after 8 weeks, transplanted MSCs promoted bone regeneration. PUM2 KD upregulated the expression of DLX5 mRNA and protein and the reporter activity of its 3'-untranslated region. RNA-IP revealed direct binding of PUM2 to
DLX5
mRNA. We then evaluated the potential of adeno-associated virus serotype 9 (AAV9)-si
Pum2
as a gene therapy for osteoporosis in OVX mice.
Conclusion
Our findings suggest a novel role for PUM2 in MSC osteogenesis and highlight the potential of PUM2 KD-MSCs in bone regeneration. Additionally, we showed that AAV9-si
Pum2
is a potential gene therapy for osteoporosis.
Journal Article
Overgrowth of long bone in rabbits by growth stimulation through metaphyseal hole creation
2023
Overgrowth of long bones was noted in pediatric patients who underwent anterior cruciate ligament reconstruction. Hyperaemia during creating a metaphyseal hole and the microinstability made by the drill hole may induce overgrowth. This study aimed to determine whether metaphyseal hole creation accelerates growth and increases bone length and compare the effects of growth stimulation between metaphyseal hole creation and periosteal resection. We selected 7- to 8-week-old male New Zealand white rabbits. Periosteal resection (N = 7) and metaphyseal hole creation (N = 7) were performed on the tibiae of skeletally immature rabbits. Seven additional sham controls were included as age-matched controls. In the metaphyseal hole group, the hole was made using a Steinman pin at the same level of periosteal resection, and the cancellous bone beneath the physis was removed by curettage. The vacant space in the metaphysis below the physis was filled with bone wax. Tibiae were collected 6 weeks after surgery. The operated tibia was longer in the metaphyseal hole group (10.43 ± 0.29 cm vs. 10.65 ± 0.35 cm,
P
= 0.002). Overgrowth was higher in the metaphyseal hole group (3.17 ± 1.16 mm) than in the sham group (− 0.17 ± 0.39 mm,
P
< 0.001). The overgrowth in the metaphyseal hole group was comparable to that in the periosteal resection group (2.23 ± 1.52 mm,
P
= 0.287). In rabbits, metaphyseal hole creation and interposition with bone wax can stimulate long bone overgrowth, and the amount of overgrowth is similar to that seen in periosteal resection.
Journal Article
Promoting angiogenesis and diabetic wound healing through delivery of protein transduction domain-BMP2 formulated nanoparticles with hydrogel
by
Yoon, Dong Suk
,
Lee, Kyoung-Mi
,
Ko, Eun Ae
in
Angiogenesis
,
Bone healing
,
Bone morphogenetic protein 2
2023
Decreased angiogenesis contributes to delayed wound healing in diabetic patients. Recombinant human bone morphogenetic protein-2 (rhBMP2) has also been demonstrated to promote angiogenesis. However, the short half-lives of soluble growth factors, including rhBMP2, limit their use in wound-healing applications. To address this limitation, we propose a novel delivery model using a protein transduction domain (PTD) formulated in a lipid nanoparticle (LNP). We aimed to determine whether a gelatin hydrogel dressing loaded with LNP-formulated PTD-BMP2 (LNP-PTD-BMP2) could enhance the angiogenic function of BMP2 and improve diabetic wound healing. In vitro, compared to the control and rhBMP2, LNP-PTD-BMP2 induced greater tube formation in human umbilical vein endothelial cells and increased the cell recruitment capacity of HaCaT cells. We inflicted large, full-thickness back skin wounds on streptozotocin-induced diabetic mice and applied gelatin hydrogel (GH) cross-linked by microbial transglutaminase containing rhBMP2, LNP-PTD-BMP2, or a control to these wounds. Wounds treated with LNP-PTD-BMP2-loaded GH exhibited enhanced wound closure, increased re-epithelialization rates, and higher collagen deposition than those with other treatments. Moreover, LNP-PTD-BMP2-loaded GH treatment resulted in more CD31- and α-SMA-positive cells, indicating greater neovascularization capacity than rhBMP2-loaded GH or GH treatments alone. Furthermore, in vivo near-infrared fluorescence revealed that LNP-PTD-BMP2 has a longer half-life than rhBMP2 and that BMP2 localizes around wounds. In conclusion, LNP-PTD-BMP2-loaded GH is a viable treatment option for diabetic wounds.
Journal Article
Development of stabilized dual growth factor-loaded hyaluronate collagen dressing matrix
by
Han, Seung Hwan
,
Kim, Jihyun
,
Yoon, Dong Suk
in
Angiogenesis
,
Biocompatibility
,
Chemical compounds
2021
Patients with diabetes experience impaired growth factor production such as epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and they are reportedly involved in wound healing processes. Here, we report dual growth factor-loaded hyaluronate collagen dressing (Dual-HCD) matrix, using different ratios of the concentration of stabilized growth factors—stabilized-EGF (S-EGF) and stabilized-bFGF (S-bFGF). At first, the optimal concentration ratio of S-EGF to S-bFGF in the Dual-HCD matrix is determined to be 1:2 in type I diabetic mice. This Dual-HCD matrix does not cause cytotoxicity and can be used in vivo. The wound-healing effect of this matrix is confirmed in type II diabetic mice. Dual HCD enhances angiogenesis which promotes wound healing and thus, it shows a significantly greater synergistic effect than the HCD matrix loaded with a single growth factor. Overall, we conclude that the Dual-HCD matrix represents an effective therapeutic agent for impaired diabetic wound healing.
Journal Article
Drug repositioning of polaprezinc for bone fracture healing
2022
Fractures and related complications are a common challenge in the field of skeletal tissue engineering. Vitamin D and calcium are the only broadly available medications for fracture healing, while zinc has been recognized as a nutritional supplement for healthy bones. Here, we aimed to use polaprezinc, an anti-ulcer drug and a chelate form of zinc and L-carnosine, as a supplement for fracture healing. Polaprezinc induced upregulation of osteogenesis-related genes and enhanced the osteogenic potential of human bone marrow-derived mesenchymal stem cells and osteoclast differentiation potential of mouse bone marrow-derived monocytes. In mouse experimental models with bone fractures, oral administration of polaprezinc accelerated fracture healing and maintained a high number of both osteoblasts and osteoclasts in the fracture areas. Collectively, polaprezinc promotes the fracture healing process efficiently by enhancing the activity of both osteoblasts and osteoclasts. Therefore, we suggest that drug repositioning of polaprezinc would be helpful for patients with fractures.
Polaprezinc promoted both osteoblast and osteoclast differentiation and altered YAP protein expression in vitro, and animals treated with polaprezinc showed greater bone formation in their fracture calluses after 21 days.
Journal Article
TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis
by
Kim, Hae-Won
,
Yoon, Dong Suk
,
Lee, Kyoung-Mi
in
3' Untranslated regions
,
Aging
,
Animal models
2022
Dysfunction of mRNA or RNA-binding proteins (RBPs) causes cellular aging and age-related degenerative diseases; however, information regarding the mechanism through which RBP-mediated posttranscriptional regulation affects cellular aging and related disease processes is limited. In this study, PUM1 was found to be associated with the self-renewal capacity and aging process of human mesenchymal stem cells (MSC). PUM1 interacted with the 3’-untranslated region of Toll-like receptor 4 (TLR4) to suppress TLR4 mRNA translation and regulate the activity of nuclear factor-κB (NF-κB), a master regulator of the aging process in MSCs. PUM1 overexpression protected MSCs against H2O2-induced cellular senescence by suppressing TLR4-mediated NF-κB activity. TLR4-mediated NF-κB activation is a key regulator in osteoarthritis (OA) pathogenesis. PUM1 overexpression enhanced the chondrogenic potential of MSCs even under the influence of inflammation-inducing factors, such as lipopolysaccharide (LPS) or interleukin-1β (IL-1β), whereas the chondrogenic potential was reduced following the PUM1 knockdown-mediated TLR4 activation. PUM1 levels decreased under inflammatory conditions in vitro and during OA progression in human and mouse disease models. PUM1 knockdown in human chondrocytes promoted chondrogenic phenotype loss, whereas PUM1 overexpression protected the cells from inflammation-mediated disruption of the chondrogenic phenotype. Gene therapy using a lentiviral vector encoding mouse PUM1 showed promise in preserving articular cartilage integrity in OA mouse models. In conclusion, PUM1 is a novel suppressor of MSC aging, and the PUM1-TLR4 regulatory axis represents a potential therapeutic target for OA.
Journal Article
Cellular and Tissue Selectivity of AAV Serotypes for Gene Delivery to Chondrocytes and Cartilage
2021
Despite several studies on the effect of adeno-associated virus (AAV)-based therapeutics on osteoarthritis (OA), information on the transduction efficiency and applicable profiles of different AAV serotypes to chondrocytes in hard cartilage tissue is still limited. Moreover, the recent discovery of additional AAV serotypes makes it necessary to screen for more suitable AAV serotypes for specific tissues. Here, we compared the transduction efficiencies of 14 conventional AAV serotypes in human chondrocytes, mouse OA models, and human cartilage explants obtained from OA patients.
To compare the transduction efficiency of individual AAV serotypes, green fluorescent protein (GFP) expression was detected by fluorescence microscopy or western blotting. Likewise, to compare the transduction efficiencies of individual AAV serotypes in cartilage tissues, GFP expression was determined using fluorescence microscopy or immunohistochemistry, and GFP-positive cells were counted.
Only AAV2, 5, 6, and 6.2 exhibited substantial transduction efficiencies in both normal and OA chondrocytes. All AAV serotypes except AAV6 and rh43 could effectively transduce human bone marrow mesenchymal stem cells. In human and mouse OA cartilage tissues, AAV2, AAV5, AAV6.2, AAV8, and AAV rh39 showed excellent tissue specificity based on transduction efficiency. These results indicate the differences in transduction efficiencies of AAV serotypes between cellular and tissue models.
Our findings indicate that AAV2 and AAV6.2 may be the best choices for AAV-mediated gene delivery into intra-articular cartilage tissue. These AAV vectors hold the potential to be of use in clinical applications to prevent OA progression if appropriate therapeutic genes are inserted into the vector.
Journal Article
Community Transmission of SARS-CoV-2 Omicron Variant, South Korea, 2021
by
Kim, Eun-Young
,
Kim, Won Ick
,
Yu, Mi
in
2019 novel coronavirus disease
,
Asymptomatic
,
Case studies
2022
In South Korea, a November 2021 outbreak caused by severe acute respiratory syndrome coronavirus 2 Omicron variant originated from 1 person with an imported case and spread to households, kindergartens, workplaces, restaurants, and hospitals, resulting in 11 clusters within 3 weeks. An epidemiologic curve indicated rapid community transmission of the Omicron variant.
Journal Article
The efficacy of conditioned medium released by tonsil-derived mesenchymal stem cells in a chronic murine colitis model
2019
Tonsil-derived mesenchymal stem cells (TMSC) have characteristics of MSC and have many advantages. In our previous studies, intraperitoneal (IP) injection of TMSC in acute and chronic colitis mouse models improved the disease activity index, colon length, and the expression levels of proinflammatory cytokines. However, TMSC were not observed to migrate to the inflammation site in the intestine. The aim of this study was to verify the therapeutic effect of conditioned medium (CM) released by TMSC (TMSC-CM) in a mouse model of dextran sulfate sodium (DSS)-induced chronic colitis. TMSC-CM was used after seeding 5×105 cells onto a 100 mm dish and culturing for 5-7 days. TMSC-CM was concentrated (TMSC-CM-conc) by three times using a 100 kDa cut-off centrifugal filter. Seven-week-old C57BL/6 mice were randomly assigned to the following 5 groups: 1) normal, 2) colitis, 3) TMSC, 4) TMSC-CM, and 5) TMSC-CM-conc. Chronic colitis was induced by continuous oral administration of 1.5% dextran sulfate sodium (DSS) for 5 days, followed by 5 additional days of tap water feeding. This cycle was repeated two more times (total 30 days). Phosphate buffered saline (in the colitis group), TMSC, TMSC-CM, and TMSC-CM-conc were injected via IP route 4, 4, 12, and 4 times, respectively. Reduction of disease activity index, weight gain, recovery of colon length, and decreased in the expression level of the proinflammatory cytokines, interleukin (IL)-1β, IL-6, and IL-17 were observed at day 30 in the treatment groups, compared to control. However, histological colitis scoring and the expression level of tumor necrosis factor α and IL-10 did not differ significantly between each group. TMSC-CM showed an equivalent effect to TMSC related to the improvement of inflammation in the chronic colitis mouse model. The data obtained support the use of TMSC-CM to treat inflammatory bowel disease without any cell transplantation.
Journal Article